
Instruction Set of 8086

1

Instruction Set of 8086
⚫An instruction is a binary pattern designed

inside a microprocessor to perform a specific
function.

⚫ The entire group of instructions that a
microprocessor supports is called
Instruction Set.

⚫ 8086 has more than 20,000 instructions.

21-Nov-2010 2ohmshankar.ece@act.edu.in

Classification of Instruction Set
⚫Data Transfer Instructions

⚫Arithmetic Instructions

⚫ Bit Manipulation Instructions

⚫ Program Execution Transfer Instructions

⚫ String Instructions

⚫ Processor Control Instructions

21-Nov-2010 3ohmshankar.ece@act.edu.in

Data Transfer Instructions
⚫ These instructions are used to transfer data

from source to destination.

⚫ The operand can be a constant, memory
location, register or I/O port address.

21-Nov-2010 4ohmshankar.ece@act.edu.in

Data Transfer Instructions
⚫ MOV Des, Src:

⚫ Src operand can be register, memory location or
immediate operand.

⚫ Des can be register or memory operand.

⚫ Both Src and Des cannot be memory location at the same
time.

⚫ E.g.:

⚫ MOV CX, 037A H

⚫ MOV AL, BL

⚫ MOV BX, [0301 H]

21-Nov-2010 5ohmshankar.ece@act.edu.in

Data Transfer Instructions
⚫ PUSH Operand:

⚫ It pushes the operand into top of stack.

⚫ E.g.: PUSH BX

⚫ POP Des:

⚫ It pops the operand from top of stack to Des.

⚫ Des can be a general purpose register, segment register
(except CS) or memory location.

⚫ E.g.: POP AX

21-Nov-2010 6ohmshankar.ece@act.edu.in

Data Transfer Instructions
⚫ XCHG Des, Src:

⚫ This instruction exchanges Src with Des.

⚫ It cannot exchange two memory locations directly.

⚫ E.g.: XCHG DX, AX

21-Nov-2010 7ohmshankar.ece@act.edu.in

Data Transfer Instructions
⚫ IN Accumulator, Port Address:

⚫ It transfers the operand from specified port to accumulator
register.

⚫ E.g.: IN AX, 0028 H

⚫ OUT Port Address, Accumulator:

⚫ It transfers the operand from accumulator to specified port.

⚫ E.g.: OUT 0028 H, AX

21-Nov-2010 8ohmshankar.ece@act.edu.in

Data Transfer Instructions
⚫LEA Register, Src:

⚫ It loads a 16-bit register with the offset
address of the data specified by the Src.

⚫ E.g.: LEA BX, [DI]

⚫ This instruction loads the contents of DI
(offset) into the BX register.

21-Nov-2010 9ohmshankar.ece@act.edu.in

Data Transfer Instructions
⚫ LDS Des, Src:

⚫ It loads 32-bit pointer from memory source to
destination register and DS.

⚫ The offset is placed in the destination register and the
segment is placed in DS.

⚫ To use this instruction the word at the lower memory
address must contain the offset and the word at the
higher address must contain the segment.

⚫ E.g.: LDS BX, [0301 H]

21-Nov-2010 10ohmshankar.ece@act.edu.in

Data Transfer Instructions
⚫ LES Des, Src:

⚫ It loads 32-bit pointer from memory source to
destination register and ES.

⚫ The offset is placed in the destination register and the
segment is placed in ES.

⚫ This instruction is very similar to LDS except that it
initializes ES instead of DS.

⚫ E.g.: LES BX, [0301 H]

21-Nov-2010 11ohmshankar.ece@act.edu.in

Data Transfer Instructions
⚫ LAHF:

⚫ It copies the lower byte of flag register to AH.

⚫ SAHF:

⚫ It copies the contents of AH to lower byte of flag register.

⚫ PUSHF:

⚫ Pushes flag register to top of stack.

⚫ POPF:

⚫ Pops the stack top to flag register.

21-Nov-2010 12ohmshankar.ece@act.edu.in

Arithmetic Instructions
⚫ADD Des, Src:

⚫ It adds a byte to byte or a word to word.

⚫ It effects AF, CF, OF, PF, SF, ZF flags.

⚫ E.g.:

⚫ ADD AL, 74H

⚫ ADD DX, AX

⚫ ADD AX, [BX]

21-Nov-2010 13ohmshankar.ece@act.edu.in

Arithmetic Instructions
⚫ADC Des, Src:

⚫ It adds the two operands with CF.

⚫ It effects AF, CF, OF, PF, SF, ZF flags.

⚫ E.g.:

⚫ ADC AL, 74H

⚫ ADC DX, AX

⚫ ADC AX, [BX]

21-Nov-2010 14ohmshankar.ece@act.edu.in

Arithmetic Instructions
⚫ SUB Des, Src:
⚫ It subtracts a byte from byte or a word from word.

⚫ It effects AF, CF, OF, PF, SF, ZF flags.

⚫ For subtraction, CF acts as borrow flag.

⚫ E.g.:
⚫ SUB AL, 74H

⚫ SUB DX, AX

⚫ SUB AX, [BX]

21-Nov-2010 15ohmshankar.ece@act.edu.in

Arithmetic Instructions
⚫ SBB Des, Src:
⚫ It subtracts the two operands and also the

borrow from the result.

⚫ It effects AF, CF, OF, PF, SF, ZF flags.

⚫ E.g.:
⚫ SBB AL, 74H

⚫ SBB DX, AX

⚫ SBB AX, [BX]

21-Nov-2010 16ohmshankar.ece@act.edu.in

Arithmetic Instructions
⚫ INC Src:

⚫ It increments the byte or word by one.

⚫ The operand can be a register or memory
location.

⚫ It effects AF, OF, PF, SF, ZF flags.

⚫ CF is not effected.

⚫ E.g.: INC AX

21-Nov-2010 17ohmshankar.ece@act.edu.in

Arithmetic Instructions
⚫DEC Src:

⚫ It decrements the byte or word by one.

⚫ The operand can be a register or memory
location.

⚫ It effects AF, OF, PF, SF, ZF flags.

⚫ CF is not effected.

⚫ E.g.: DEC AX

21-Nov-2010 18ohmshankar.ece@act.edu.in

Arithmetic Instructions
⚫ AAA (ASCII Adjust after Addition):

⚫ The data entered from the terminal is in ASCII format.

⚫ In ASCII, 0 – 9 are represented by 30H – 39H.

⚫ This instruction allows us to add the ASCII codes.

⚫ This instruction does not have any operand.

⚫ Other ASCII Instructions:
⚫ AAS (ASCII Adjust after Subtraction)

⚫ AAM (ASCII Adjust after Multiplication)

⚫ AAD (ASCII Adjust Before Division)

21-Nov-2010 19ohmshankar.ece@act.edu.in

Arithmetic Instructions
⚫ DAA (Decimal Adjust after Addition)

⚫ It is used to make sure that the result of adding two BCD
numbers is adjusted to be a correct BCD number.

⚫ It only works on AL register.

⚫ DAS (Decimal Adjust after Subtraction)

⚫ It is used to make sure that the result of subtracting two
BCD numbers is adjusted to be a correct BCD number.

⚫ It only works on AL register.

21-Nov-2010 20ohmshankar.ece@act.edu.in

Arithmetic Instructions
⚫NEG Src:

⚫ It creates 2’s complement of a given
number.

⚫That means, it changes the sign of a
number.

21-Nov-2010 21ohmshankar.ece@act.edu.in

Arithmetic Instructions
⚫ CMP Des, Src:

⚫ It compares two specified bytes or words.

⚫ The Src and Des can be a constant, register or memory
location.

⚫ Both operands cannot be a memory location at the same
time.

⚫ The comparison is done simply by internally subtracting
the source from destination.

⚫ The value of source and destination does not change, but
the flags are modified to indicate the result.

21-Nov-2010 22ohmshankar.ece@act.edu.in

Arithmetic Instructions
⚫ MUL Src:

⚫ It is an unsigned multiplication instruction.

⚫ It multiplies two bytes to produce a word or two words to
produce a double word.

⚫ AX = AL * Src

⚫ DX : AX = AX * Src

⚫ This instruction assumes one of the operand in AL or AX.

⚫ Src can be a register or memory location.

⚫ IMUL Src:

⚫ It is a signed multiplication instruction.

21-Nov-2010 23ohmshankar.ece@act.edu.in

Arithmetic Instructions
⚫ DIV Src:

⚫ It is an unsigned division instruction.

⚫ It divides word by byte or double word by word.

⚫ The operand is stored in AX, divisor is Src and the
result is stored as:

⚫ AH = remainder AL = quotient

⚫ IDIV Src:

⚫ It is a signed division instruction.

21-Nov-2010 24ohmshankar.ece@act.edu.in

Arithmetic Instructions
⚫ CBW (Convert Byte to Word):

⚫ This instruction converts byte in AL to word in AX.

⚫ The conversion is done by extending the sign bit of AL
throughout AH.

⚫ CWD (Convert Word to Double Word):

⚫ This instruction converts word in AX to double word in
DX : AX.

⚫ The conversion is done by extending the sign bit of AX
throughout DX.

21-Nov-2010 25ohmshankar.ece@act.edu.in

Bit Manipulation Instructions
⚫ These instructions are used at the bit level.

⚫ These instructions can be used for:

⚫ Testing a zero bit

⚫ Set or reset a bit

⚫ Shift bits across registers

21-Nov-2010 26ohmshankar.ece@act.edu.in

Bit Manipulation Instructions
⚫ NOT Src:

⚫ It complements each bit of Src to produce 1’s
complement of the specified operand.

⚫ The operand can be a register or memory location.

21-Nov-2010 27ohmshankar.ece@act.edu.in

Bit Manipulation Instructions
⚫ AND Des, Src:

⚫ It performs AND operation of Des and Src.

⚫ Src can be immediate number, register or memory
location.

⚫ Des can be register or memory location.

⚫ Both operands cannot be memory locations at the same
time.

⚫ CF and OF become zero after the operation.

⚫ PF, SF and ZF are updated.

21-Nov-2010 28ohmshankar.ece@act.edu.in

Bit Manipulation Instructions
⚫ OR Des, Src:

⚫ It performs OR operation of Des and Src.

⚫ Src can be immediate number, register or memory
location.

⚫ Des can be register or memory location.

⚫ Both operands cannot be memory locations at the same
time.

⚫ CF and OF become zero after the operation.

⚫ PF, SF and ZF are updated.

21-Nov-2010 29ohmshankar.ece@act.edu.in

Bit Manipulation Instructions
⚫ XOR Des, Src:

⚫ It performs XOR operation of Des and Src.

⚫ Src can be immediate number, register or memory
location.

⚫ Des can be register or memory location.

⚫ Both operands cannot be memory locations at the same
time.

⚫ CF and OF become zero after the operation.

⚫ PF, SF and ZF are updated.

21-Nov-2010 30ohmshankar.ece@act.edu.in

Bit Manipulation Instructions
⚫ SHL Des, Count:

⚫ It shift bits of byte or word left, by count.

⚫ It puts zero(s) in LSBs.

⚫ MSB is shifted into carry flag.

⚫ If the number of bits desired to be shifted is 1, then the
immediate number 1 can be written in Count.

⚫ However, if the number of bits to be shifted is more than
1, then the count is put in CL register.

21-Nov-2010 31ohmshankar.ece@act.edu.in

Bit Manipulation Instructions
⚫ SHR Des, Count:

⚫ It shift bits of byte or word right, by count.

⚫ It puts zero(s) in MSBs.

⚫ LSB is shifted into carry flag.

⚫ If the number of bits desired to be shifted is 1, then the
immediate number 1 can be written in Count.

⚫ However, if the number of bits to be shifted is more than
1, then the count is put in CL register.

21-Nov-2010 32ohmshankar.ece@act.edu.in

Bit Manipulation Instructions
⚫ ROL Des, Count:

⚫ It rotates bits of byte or word left, by count.

⚫ MSB is transferred to LSB and also to CF.

⚫ If the number of bits desired to be shifted is 1, then the
immediate number 1 can be written in Count.

⚫ However, if the number of bits to be shifted is more than
1, then the count is put in CL register.

21-Nov-2010 33ohmshankar.ece@act.edu.in

Bit Manipulation Instructions
⚫ ROR Des, Count:

⚫ It rotates bits of byte or word right, by count.

⚫ LSB is transferred to MSB and also to CF.

⚫ If the number of bits desired to be shifted is 1, then the
immediate number 1 can be written in Count.

⚫ However, if the number of bits to be shifted is more than
1, then the count is put in CL register.

21-Nov-2010 34ohmshankar.ece@act.edu.in

Program Execution Transfer Instructions

⚫ These instructions cause change in the sequence of the
execution of instruction.

⚫ This change can be through a condition or sometimes
unconditional.

⚫ The conditions are represented by flags.

21-Nov-2010 35ohmshankar.ece@act.edu.in

Program Execution Transfer Instructions

⚫ CALL Des:

⚫ This instruction is used to call a subroutine or function
or procedure.

⚫ The address of next instruction after CALL is saved onto
stack.

⚫ RET:

⚫ It returns the control from procedure to calling program.

⚫ Every CALL instruction should have a RET.

21-Nov-2010 36ohmshankar.ece@act.edu.in

Program Execution Transfer Instructions

⚫ JMP Des:

⚫ This instruction is used for unconditional jump from
one place to another.

⚫ Jxx Des (Conditional Jump):

⚫ All the conditional jumps follow some conditional
statements or any instruction that affects the flag.

21-Nov-2010 37ohmshankar.ece@act.edu.in

Conditional Jump Table
Mnemonic Meaning Jump Condition
JA Jump if Above CF = 0 and ZF = 0

JAE Jump if Above or Equal CF = 0

JB Jump if Below CF = 1

JBE Jump if Below or Equal CF = 1 or ZF = 1

JC Jump if Carry CF = 1

JE Jump if Equal ZF = 1

JNC Jump if Not Carry CF = 0

JNE Jump if Not Equal ZF = 0

JNZ Jump if Not Zero ZF = 0

JPE Jump if Parity Even PF = 1

JPO Jump if Parity Odd PF = 0

JZ Jump if Zero ZF = 1
21-Nov-2010 38ohmshankar.ece@act.edu.in

Program Execution Transfer Instructions

⚫ Loop Des:

⚫ This is a looping instruction.

⚫ The number of times looping is required is placed in the
CX register.

⚫ With each iteration, the contents of CX are
decremented.

⚫ ZF is checked whether to loop again or not.

21-Nov-2010 39ohmshankar.ece@act.edu.in

String Instructions
⚫ String in assembly language is just a sequentially

stored bytes or words.

⚫ There are very strong set of string instructions in 8086.

⚫ By using these string instructions, the size of the
program is considerably reduced.

21-Nov-2010 40ohmshankar.ece@act.edu.in

String Instructions
⚫ CMPS Des, Src:

⚫ It compares the string bytes or words.

⚫ SCAS String:

⚫ It scans a string.

⚫ It compares the String with byte in AL or with word in
AX.

21-Nov-2010 41ohmshankar.ece@act.edu.in

String Instructions
⚫ MOVS / MOVSB / MOVSW:

⚫ It causes moving of byte or word from one string to
another.

⚫ In this instruction, the source string is in Data Segment
and destination string is in Extra Segment.

⚫ SI and DI store the offset values for source and
destination index.

21-Nov-2010 42ohmshankar.ece@act.edu.in

String Instructions
⚫ REP (Repeat):

⚫ This is an instruction prefix.

⚫ It causes the repetition of the instruction until CX
becomes zero.

⚫ E.g.: REP MOVSB STR1, STR2

⚫ It copies byte by byte contents.

⚫ REP repeats the operation MOVSB until CX becomes zero.

21-Nov-2010 43ohmshankar.ece@act.edu.in

Processor Control Instructions
⚫ These instructions control the processor itself.

⚫ 8086 allows to control certain control flags that:

⚫ causes the processing in a certain direction

⚫ processor synchronization if more than one
microprocessor attached.

21-Nov-2010 44ohmshankar.ece@act.edu.in

Processor Control Instructions
⚫ STC:

⚫ It sets the carry flag to 1.

⚫ CLC:

⚫ It clears the carry flag to 0.

⚫ CMC:

⚫ It complements the carry flag.

21-Nov-2010 45ohmshankar.ece@act.edu.in

Processor Control Instructions
⚫ STD:

⚫ It sets the direction flag to 1.

⚫ If it is set, string bytes are accessed from higher memory
address to lower memory address.

⚫ CLD:

⚫ It clears the direction flag to 0.

⚫ If it is reset, the string bytes are accessed from lower
memory address to higher memory address.

21-Nov-2010 46ohmshankar.ece@act.edu.in

21-Nov-2010 ohmshankar.ece@act.edu.in 47

21-Nov-2010 ohmshankar.ece@act.edu.in 48

