
Module IV System Software(S5 CSE)

1 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

MODULE IV

• Linker and Loader

o Basic Loader functions

▪ Design of absolute loader

▪ Simple bootstrap Loader

o Machine dependent loader features

▪ Relocation

▪ Program Linking

• Algorithm and data structures of two pass Linking Loader

o Machine independent loader features

o Loader Design Options.

• Linker and Loader

o Loading: Brings the object program into memory for execution.

o Relocation: Modifies the object program so that it can be loaded at an address different

from the location originally specified.

o Linking: Combines two or more separate object programs and supplies the information

needed to allow references between them.

o Loader is a system program that performs the loading function. Many loaders also

support relocation and linking.

o Linker (linkage editor) is a system program that performs the linking operations and

need a separate loader to handle relocation and loading.

o Linking Loader is a system program that having both linking and loading capabilities.

o Basic Loader Functions

▪ Bringing an object program into memory.

▪ Starting its execution.

o Basic Loader Functions

▪ Allocation: Allocates the space for program in the memory, by calculating the size

of the program. Allocation is done by the programmer.

▪ Linking: It resolves the symbolic references (code/data) between the object modules

by assigning all the user subroutine and library subroutine addresses. Linking is done

by the programmer.

▪ Relocation: There are some address dependent locations in the program, such

address constants must be adjusted according to allocated space. Relocation is done

by the assembler.

▪ Loading: Places all the machine instructions and data of corresponding programs

and subroutines into the memory. Loading is done by the loader.

o Type of loaders

▪ Absolute loader

▪ Bootstrap loader

▪ Assemble-and-go loader

▪ Relocating loader (Relative loader)

▪ Direct linking loader

Module IV System Software(S5 CSE)

2 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

o Absolute loader

▪ The object code is loaded to the specified location in the memory.

▪ All functions are accomplished in a single pass as follows:

• The Header record of object programs is checked to verify that the correct

program has been presented for loading.

• As each Text record is read, the object code it contains is moved to the

indicated address in memory.

• When the End record is encountered, the loader jumps to the specified address

to begin execution of the loaded program.

▪ No linking and relocation needed.

▪ Example: Consider the following object program

Module IV System Software(S5 CSE)

3 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• Each pair of bytes from the object program record must be packed together into

one byte during loading.

• Eg: Opcode for STL is 14. It is saved in object program as 2 bytes(2

characters). While loading it is converted to single byte(00010100).

• The content of the memory location for which there is no Text record are shown

as xxxx.

▪ Advantage:

• Simple

• Efficient(less space and loading time)

▪ Disadvantage:

• Programmer should specify the actual address

o If the system having small memory, only one program can run at a time. So

it does not create much difficulty to specify the address.

o On a larger system, we are supposed to run several independent programs.

It is not easy to specify actual address while writing programs.

• Difficult to use subroutines libraries efficiently.

o If there are multiple subroutines, the programmer must remember the

address of each and use that absolute address explicitly in other subroutines

to perform subroutine linkage.

o Solution: Write relocatable programs instead of absolute ones.

o Bootstrap Loader

▪ It is a special type of absolute loader.

▪ When a computer is first turned on or restarted, bootstrap loader is executed.

▪ This bootstrap loads the operating system into memory.

▪ The bootstrap itself begins at address 0

▪ It loads the OS(from device F1) starting at address 0x80.

▪ The object code having no header record, end record or control information.

▪ After loading the OS, the control is transferred to the instruction at address 0x80.

▪ Algorithm

X = 0x80 //initial location of the OS to be loaded

Loop

{ A = GETC //read and convert from ASCII to hexadecimal digit

 Save the value in the higher order 4 bits of S

 A = GETC //read and convert from ASCII to hexadecimal digit

 Combine the value to form one byte A = (A + S)

 Store the value of A to the address in register

 X = X + 1

}

Module IV System Software(S5 CSE)

4 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Algorithm for GETC

A = read one character

If A = 0x04 then jump to 0x80 //end of file

If A < 48 then GETC // ignore the character if it is < 0

A = A – 48 // convert to hexadecimal

If A < 10 then return

A = A – 7

return

• Register X keeps the address of the next memory location to be loaded.

• GETC is used to read and convert a pair of characters from device F1.

• These 2 hexadecimal digit values are combined into a single byte by shifting the

first one left 4 bit positions and adding the second to it.

• The resulting byte is stored at the address currently in register X.

▪ Program

▪ Eg: = C “D8”

Module IV System Software(S5 CSE)

5 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

o Machine-Dependent Loader Feature

▪ Shortcoming of an absolute loader

• Programmer needs to specify the actual address at which it will be loaded into

memory.

• It is difficult to run several programs concurrently, sharing memory between

them.

• It is difficult to use subroutine libraries.

▪ Solution:

• A more complex loader that provides

o Program relocation

o Program linking

▪ The machine dependent loader features are

• Relocation

• Linking

▪ Program Relocation

• Program Relocation

o The object program is loaded into memory wherever there is room for it.

o The actual starting address of the object program is not known until load

time.

• Relocating Loader / Relative Loader: Loaders that allow program relocation.

• Two methods for specifying relocation as part of the object program

o Modification records

o Relocation bits

• Modification records

o A Modification record is used to describe each part of the object code that

must be changed when the program is relocated.

o Used when a small number of relocations is required.

o Format

Module IV System Software(S5 CSE)

6 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

o Example

• Most of the instructions in this program use relative or immediate

addressing

• Lines 15, 35 and 65 are the only items whose values are affected

by program relocation.

• The object program should have one modification record for each

value that must be changed during relocation.

Module IV System Software(S5 CSE)

7 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

▪ The object program is

o Algorithm

Get PROGADDR from Operating System

Read a record from input file

While record_type != ‘E’ do

{

 If record_type = ‘T’ do

 {

 Move object code from record to location PROGADDR + Specified address

 }

 If record_type = ‘M’ do

 {

 Add PROGADDR at the location (PROGADDR + Specified address)

 }

 Read next input record

}

o Disadvantage

▪ It is not well suited for use with all machine architectures. It is not

suited for standard SIC programs.

• Relocation bits

o Each instruction is associated with one relocation bit

o These relocation bits are gathered into bit masks in a Text record.
▪ Relocation bit is 0: no modification is needed
▪ Relocation bit is 1: modification is needed.

o Used when a large number of relocations is required.

o Format

o Twelve-bit mask is used in each Text record (col:10-12)

o Each text record contains less than 12 words

o Unused words are set to 0

o For absolute loader, there are no relocation bits. Column 10-69 contains

object code.

Module IV System Software(S5 CSE)

8 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

o Example: Relocatable program for standard SIC machine

Module IV System Software(S5 CSE)

9 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

▪ The standard SIC machine does not use relative addressing (PC-

relative, Base-relative)

▪ All instructions expect RSUB need relocation

▪ Too many modification records are required if we adopt the 1st method.

So we move to relocation bit method.

▪ Object program is

• The underlined hexadecimal digits in the object program represent

the bit mask.

• FFC

o FFC → 111111111100

o All ten words are to be modified

• E00

o E00 → 111000000000

o First three records are to be modified.

o Algorithm

Get PROGADDR from Operating System

Read a record from the input file

While record_type != ‘E’ do

{

 If record_type = ‘T’ do

 {

 length = second data

 mask bits (M) = third data

 for i=0 to length do

 {

 If Mi = 1 then

 Add PROGADDR to object code and move that data to the location

 (PROGADDR + Specified address)

 else

 Move object code from record to location PROGADDR + Specified address

 }

 }

 Read next input record

}

Module IV System Software(S5 CSE)

10 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

▪ Program Linking

• The goal of program linking is to resolve the problems with external references

(EXTREF) and external definitions (EXTDEF) from different control sections.

o EXTDEF (external definition) - The EXTDEF statement in a control

section names symbols that are defined in present control section and may

be used by other sections.

▪ Eg: EXTDEF LISTA, ENDA

▪ The Define Record is used to represent symbols in the object program

▪ Syntax:

• Eg: D^LISTA ^000040^ENDA ^000054

o EXTREF (external reference) - The EXTREF statement names symbols

used in present control section and are defined elsewhere.

▪ Eg: EXTREF LISTB,ENDB,LISTC,ENDC

▪ The Refer Record is used to represent symbols in the object program

▪ Syntax:

• Eg: R^ LISTB ^ENDB ^LISTC ^ENDC

• Example: Here are the three programs named as PROGA, PROGB and PROGC,

which are separately assembled and each of which consists of a single control section.

• LISTA, ENDA in PROGA, LISTB, ENDB in PROGB and LISTC, ENDC in PROGC

are external definitions in each of the control sections.

• Similarly LISTB, ENDB, LISTC, ENDC in PROGA, LISTA, ENDA, LISTC, ENDC

in PROGB, and LISTA, ENDA, LISTB, ENDB in PROGC, are external references.

• Each program contains

o Instruction operands (REF1, REF2, REF3).

o Values of data words (REF4 through REF8).

o Consider REF1 in all control sections: +LDA LISTA

▪ PROGA

• Here LISTA is the label in the current control section.

• The instruction is PC relative and will get the correct object code

(03201D).

▪ PROGB, PROGMC

• Here LISTA is a reference to an external symbol.

• We will not get the correct object code. Simply set the address

field to 0.

• Also place a modification record in the object program. It instructs

the loader to add the value of the symbol LISTA to this address

field when the program is linked.

Module IV System Software(S5 CSE)

11 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

12 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

13 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

14 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

o Consider REF2: REF2 +LDT LISTB+4

▪ PROGA, PROGC

• Store the value of constant in the address field(00004)

• There should be one modification record which instructs the loader

to add to this field the value of LISTB.

▪ PROGB

• LISTB is the label in the current control section.

• The instruction is PC relative and the will get the object code

(772027).

o Consider REF4: REF4 WORD ENDA-LISTA+LISTC

▪ PROGA

• Here LISTA and ENDA are the labels in the current control

section.

• LISTC is a reference to an external symbol.

• The object code is the value of ENDA-LISTA (000014), which is a

temporary value.

• Place a modification record for LISTC

• While loading the starting address of

o PROGA is 4000

o PROGB is 4063

o PROGC is 40E2

• Starting address of REF4 in PROGA is 4054(beginning address of

PROGA + 0054)

▪ PROGB

• Here LISTA, ENDA and LISTC are the references to external

symbols

Module IV System Software(S5 CSE)

15 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• Put 000000 as object code.

• Place modification records for LISTA, ENDA and LISTC

▪ PROGC

• Here LISTA and ENDA are the references to external symbols

• LISTC is the labels in the current control section.

• The object code is the value of LISTC (000030). While loading PROGC

the address of LISTC may change. So place a modification record for

PROGC.

• Place two more modification records for LISTA and ENDA

• The program in memory after relocation, linking and loading

o Algorithm and Data Structures for a Linking Loader

▪ Input: set of object programs (control sections) that are to be linked together.

▪ A linking loader usually makes two passes over its input

• Pass 1: Assigns addresses to all external symbols.

• Pass 2: Performs the actual relocation, linking and loading.

▪ Data structure used is External Symbol Table (ESTAB). The fields are

• Control sections name

• Name each external symbol

• Address of each external symbol

▪ Two other important variables are:

• PROGADDR (program load address)

o The beginning address in memory where the linked program is to be

loaded.

o Its value is supplied to the loader by the OS.

• CSADDR (control section address)

Module IV System Software(S5 CSE)

16 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

o The starting address assigned to the control section currently being scanned

by the loader

▪ A hashed organization is used for this table

▪ Pass 1

• The loader is concerned only with Header and Define records in the control

sections

• The beginning load address for the linked program (PROGADDR) is obtained

from the OS. This becomes the starting address (CSADDR) for the first control

section in the input sequence.

• The control section name from Header record is entered into ESTAB, with

value given by CSADDR. All external symbols appearing in the Define record

for the control section are also entered into ESTAB. Their addresses are

obtained by adding the value specified in the Define record to CSADDR.

• When the End record is read, the control section length CSLTH is added to

CSADDR. This calculation gives the starting address for the next control

section in sequence.

• At the end of Pass 1, ESTAB contains all external symbols defined in the set of

control sections together with the address assigned to each.

• Pass 1 optionally generate load map

▪ Pass 2

• As each Text record is read, the object code is moved to the specified address +

CSADDR.

• When a Modification record is encountered, the symbol whose value is to be

used for modification is looked up in ESTAB.

• This value is then added to or subtracted from the indicated location in memory.

• The last step performed by the loader is usually the transferring of control to the

loaded program to begin execution.

o The End record for each control section may contain the address of the first

instruction in that control section to be executed. Our loader takes this as

the transfer point to begin execution.

o If more than one control section specifies a transfer address, the loader

arbitrarily uses the last one encountered.

Module IV System Software(S5 CSE)

17 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

o If no control section contains a transfer address, the loader uses the

beginning of the linked program (i.e., PROGADDR) as the transfer point.

o Normally, a transfer address would be placed in the End record for a main

program, but not for a subroutine.

Pass 1 Linking Loader Algorithm

Get PROGADDR from OS

CSADDR = PROGADDR \\ for the 1st control section

While not end of input do

{

 Read the next input record \\ header record for the control section

 CSLTH = control section length

 Search ESTAB for the control section name

 If found then

 Set error flag

 Else

 Enter control section name and CSADDR into ESTAB

 While record_type != ‘E’ do

 {

 Read the next input record

 If record_type = ‘D’ then

 {

 For each symbol in the record do

 {

 Search ESTAB for symbol name

 If found then

 Set error flag

 Else

 Enter symbol and (CSADDR + indicated address) into ESTAB

 }

 }

 }

 CSADDR = CSADDR + CSLTH //starting address of the next control section

}

Pass 2 Linking Loader Algorithm

CSADDR = PROGADDR \\ for the 1st control section

EXECADDR = PROGADDR

While not end of input do

{

 Read the next input record \\ header record for the control section

 CSLTH = control section length

 While record_type != ‘E’ do

 {

Read the next input record

If record_type = ‘T’ then

 {

file://///for
file://///for

Module IV System Software(S5 CSE)

18 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

 If the object code is in character form then

 Convert it into internal representation

 Move the object code from record to location (CSADDR + specified address)

 }

Else if record_type = ‘M’ then

{

 Search ESTAB for modification symbol name

 If found then

 Add or subtract the symbol value at location (CSADDR + specified address)

 Else

 Set error flag

}

 }

 If an address is specified in End record then

 EXECADDR = CSADDR + specified address

 CSADDR = CSADDR + CSLTH

}

Jump to location given by EXECADDR to start execution of the program

▪ We can make the linking loader algorithm more efficient by

• Assigning a reference number to each external symbol referred to in a control

section

o 01: control section name

o 02~: external reference symbols

• Use this reference number (instead of the symbol name) in Modification records

• Advantage of this reference-number mechanism:

o It avoids multiple searches of ESTAB for the same symbol during the

loading of a control section.

▪ Search of ESTAB for each external symbol can be performed once and

the result is stored in a table indexed by the reference number.

▪ The values for code modification can then be obtained by simply

indexing into the table.

Module IV System Software(S5 CSE)

19 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• The object program will be as follows

o MACHINE-INDEPENDENT LOADER FEATURES

▪ Loading and linking are OS service functions.

▪ Following are the machine-independent loader features

• Automatic Library Search

• Loader Options

▪ Automatic Library Search(Automatic Library Call)

• This feature allows a programmer to use standard subroutines without explicitly

including them in the program to be loaded.

• This feature allows the programmer to use subroutines from one or more

libraries (eg: mathematical or statistical routines).

• These subroutines are automatically retrieved from a library, linked with main

program and loaded as they are needed during linking.

Module IV System Software(S5 CSE)

20 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• The programmer needs to mention these subroutine names as external

references in the source program.

• Steps:

o Linking loaders that support automatic library search must keep track of

external symbols that are referred to in the primary input to the loader.

o At the end of Pass 1, the symbols in ESTAB that remain undefined

represent unresolved external references.

o The loader searches the library or libraries specified for routines that

contain the definitions of these symbols, and processes the subroutines

found by this search exactly as if they had been part of the primary input

stream.

o The subroutines fetched from a library in this way may themselves contain

external references. It is therefore necessary to repeat the library search

process until all references are resolved.

o If unresolved external references remain after the library search is

completed, these must be treated as errors.

• It also allows the programmer to override standard subroutines.

o Example

▪ Suppose the main program refers to a standard subroutine SQRT.

▪ A programmer wanted to use a different version of SQRT by including

it as input to the loader.

▪ By the end of Pass1 of the loader, SQRT would already be defined, so

it would not be included in any library search.

• The libraries to be searched by the loader ordinarily contain assembled or

compiled versions of the subroutines (i.e., object programs)

• In most cases a special file structure is used for the libraries. This structure

contains a directory that gives the name of each routine and a pointer to its

address within the file.

• Some operating systems can keep the directory for commonly used libraries

permanently in memory.

• The same technique applies equally well to the resolution of external references

to data items

▪ Loader Options

• Many loaders allow the user to specify options that modify the standard

processing.

• Many loaders have a special command language that is used to specify loader

options.

• Different ways to provide these control statements

o A separate input file to the loader that contains such control statements.

o These statements are embedded in the primary input stream between object

programs

o Include these statements in source program, and the assembler retains these

commands as a part of the object program.

Module IV System Software(S5 CSE)

21 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

• Loader option 1: Allows the selection of alternative sources of input.

o Command: INCLUDE program-name (library-name)

Direct the loader to read the designated object program from a library and

treat it as if it were part of the primary loader input.

• Loader option 2: Allows the user to delete or change external symbols or entire

control sections.

o Command: DELETE csect-name

Instruct the loader to delete the named control section(s) from the set of

programs being loaded.

o Command: CHANGE name1, name2

The external symbol name1 to be changed to name2.

o Example: Suppose we have a main program COPY and two subroutines

RDREC and WRREC, each of these are separate control sections. Suppose

that READ and WRITE are the two utility subroutines which perform the

functions as RDREC and WRREC. The following commands allow the

main program COPY to use these utility subroutines.

▪ It direct the loader to include control sections READ and WRITE from

the library UTLIB

▪ Delete the control section RDREC and WRREC

▪ All external references to RDREC is changed to refer to symbol READ

▪ All external references to WRREC is changed to refer to symbol

WRITE

• Loader option 3: Involves the automatic inclusion of library routines to satisfy

external references.

o Command: LIBRARY MYLIB

Such user-specified libraries are normally searched before the standard

system libraries. This allows the user to use special versions of the standard

routines.

o Suppose the main function of a program is used to gather and sort data. The

program also performs an analysis of data using the routines STDDEV,

PLOT and CORREL from a statistical library. Suppose this statistical

analysis is not performed in a particular execution, use the following

command.

NOCALL STDDEV, PLOT, CORREL

This instructs the loader that these external references are to remain

unresolved. This avoids the overhead of loading and linking the unneeded

routines, and saves the memory space that would otherwise be required.

• Loader option 4: It is possible to specify that no eternal references be resolved

by library search. This means that an error will result if the program attempts to

Module IV System Software(S5 CSE)

22 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

make such an external references during execution. This option is useful when

programs are to be linked but not executed immediately.

• Loader option 5: Can control output from loader

o A load map may be generated during loading process

o Through control statements the user can specify whether or not such a map

is to be printed at all.

o If a map is desired, the level of detail can be selected.

▪ Ex: the map may include control section name and address only

• Loader option 6: Ability to specify the location at which execution is to begin

(Overriding any information given in the object program).

• Loader option 7: To control whether or not the loader should attempt to

execute the program if errors are detected during the load operation.

o Ex: unresolved eternal references.

O LOADER DESIGN OPTIONS

▪ Linking loader:

• The source program is assembled or compiled, producing an object program

which may contain several control sections.

• A linking loader performs all linking and relocation operations, including

automatic library search if specified, and loads the linked program directly into

memory for execution.

• Disadvantage: The linking loader searches the libraries and resolves external

references every time the program is executed.

• Advantage:

o When the program is used so infrequently, it is not worthwhile to store the

assembled version in a library. In such cases it is more efficient to use

linking loader.

o It is used in a program development and testing environment

• There are two alternatives design options:

o Linkage Editor

o Dynamic Linking

• Linkage Editor

o Which perform linking prior to load time

Module IV System Software(S5 CSE)

23 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

o It produces a linked version of the program (load module or executable

image), which is written to a file or library for later execution.

o A simple relocating loader can be used to load the linked version of

program into memory for execution.

o The Linkage Editor performs relocation of all control sections relative to

the start of the linked program.

o The only object code modification necessary is the addition of an actual

load address to relative values within the program.

o Relocation is indicated by some mechanisms such as Modification Records

or Bit Masks.

o Advantage:

▪ The loading can be accomplished in one pass with no external symbol

table required. This involves much less overhead than using a linking

loader

▪ Reduce the time: If Resolution of external references and library

searching are only performed once. It will reduces the load time.

o One variant: If the actual address at which the program will be loaded is

known in advance, the linkage editor can perform all of the needed

relocation. The result is a linked program that is an exact image of the way

the program will appear in memory during execution. In this case only an

absolute loader is needed to load object code into memory.

o Linkage editors can perform many useful functions

▪ The linkage editor can be used to replace the subroutines in the linked

version

• Eg: Suppose PLANNER is a program that uses a large number of

subroutines. One subroutine among them is PROJECT. We can

write a new version of PROJECT to improve its efficiency. After

the new version of PROJECT is assembled, the linkage editor can

be used to replace this subroutine in the linked version of all the

other subroutines. Use the following code for this purpose.

Module IV System Software(S5 CSE)

24 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

▪ Linkage editors can also be used to build packages of subroutines or

other control sections that are generally used together.

• Suppose there are few closely related subroutines in the directory

FTNLIB. The above command sequence combines these

subroutines from the directory FTNLIB and produces a linked

module called FTNIO. It is then insert in to the directory SUBLIB.

Thus the search of SUBLIB before FTNLIB would retrieve

FTNIO instead of the separate routines.

• Dynamic Linking (Dynamic Loading or Load on call)

o The linking function is performed at execution time.

o A subroutine is loaded and linked to the rest of the program when it is first

called

o Dynamic linking provides the ability to load the routines only when they

are needed

o Advantage:

▪ Allow several executing programs to share one copy of a subroutine or

library

▪ Allow to share one object by several programs:

• In object-oriented system, it allows the implementation of the

object and its methods to be determined at the time the program is

run.

▪ Load the routines only when they are needed:

• Suppose a program contains subroutines that correct errors in the

input data during execution. If such errors are rare, this subroutine

may not be used for all executions. Dynamic linking provides the

ability to load the routines only when they are needed. This will

save time and memory space.

▪ Avoid to load the entire library for each execution

• Suppose a program uses a library that contains large number of

subroutines. The exact routine can not be predicted until the

program examines its input. Dynamic linking loads the required

subroutines instead of entire library for each execution.

Module IV System Software(S5 CSE)

25 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

o Dynamic loading must be called via an operating system service requests

(Load-and-call services)

▪ OS examines its internal tables to determine whether or not the routine

is already loaded

▪ If not present

• Routine is loaded from library

• Control is passed from OS to the called subroutine

• Subroutine is finished

▪ Else

• Control is passed to a subroutine which is already in memory

▪ Fig (a): The user program contains a JSUB instruction referring to an

external symbol. The program makes a load-and-call service request to

OS. The parameter of this request is the symbolic name of the routine

to be called.

▪ Fig (b): OS examines its internal tables to determine whether or not the

routine is already loaded. If necessary, the routine is loaded from the

specified user or system libraries.

▪ Fig (c): Control is then passed from OS to the routine being called

▪ Fig (d): When the called subroutine completes it processing, it returns

to its caller (i.e., OS). OS then returns control to the program that

issued the request.

Module IV System Software(S5 CSE)

26 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

▪ Fig (e): If a subroutine is still in memory, a second call to it may not

require another load operation. Control may simply be passed from the

dynamic loader to the called routine.

▪ This subroutine should retain in memory for later use as long as there

is enough space. If the program requires more space, it may removed

from memory.

o Binding of the name to an actual address is delayed from load time until

execution time

▪ Bootstrap Loaders

• Given an idle computer with no program in memory, how do we get things

started?

• With the machine empty and idle there is no need for program relocation.

• We can specify the absolute address for which the OS is first loaded.

• An absolute loader is used to accomplish this task.

• Different options:

o Required an operator to enter the object code for an absolute loader into

memory using switches on the computer console.

▪ Disadvantage: Inconvenient and error prone

• The absolute loader program may permanently resident in a ROM.

o When some hardware signal occurs (the operator pressing a system start

switch), the machine begins to execute this ROM program.

o There are 2 options

▪ The program is executed directly in the ROM

▪ The program is copied from ROM to main memory and executed there.

o Disadvantage:

▪ Some systems do not have such read only storage

▪ It is inconvenient to change the ROM program, if the modification in

the absolute loader is required.

• Have a built in hardware function (or a short ROM program) that reads a fixed

length record from some device into memory at a fixed location.

o This device may be selected via console switches.

o After the read operation is complete, control is automatically transferred to

the address in memory where the record was stored.

o This record contains machine instructions that load the absolute program

that follows.

o The first record is generally referred to as bootstrap loader

o This first record causes the reading of others, and these in turn can cause

the reading of still more records – hence the term boots trap.

o Such a loader is added to the beginning of all object programs.

o This includes the OS itself and all stand-alone programs that are to be run

without an OS.

Module IV System Software(S5 CSE)

27 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Previous Year University Questions

1. Give the algorithm for an absolute loader

2. Given an idle computer with no programs in memory, how do we get things started?

3. What is the use of bitmask in program relocation? Illustrate with example

4. Describe the data structures used for the linking loader algorithm. Give the algorithm for pass

1 of the linking loader.

5. Which are the data structures used during the operation of a linking loader? Write the

algorithm for Pass 2 of a Linking Loader

6. Give the algorithm for pass 2 of a linking loader.

7. With the data structures used, state and explain two pass algorithm for a linking loader.

8. Develop the records (excluding header, text and end records) for the following control

section named COPY

9. Write notes on machine independent loader features.

10. Explain any one machine independent loader feature.

Module IV System Software(S5 CSE)

28 Prepared By: Dona Jose, AP, CSE
 Reference Book: System Software: An Introduction to System Programming, Leland L Beck

11. What is Automatic Library Search?

12. Write notes on the different loader design options.

13. With a help of neat diagram explain what is a linkage editor?

14. Differentiate between linking loaders and linkage editors

15. What is Dynamic Linking? Explain with example.

