Module IV

System Software(S5 CSE)

MODULE IV
e Linker and Loader

(@]

@)
©)

Basic Loader functions
= Design of absolute loader
= Simple bootstrap Loader
Machine dependent loader features
= Relocation
= Program Linking
e Algorithm and data structures of two pass Linking Loader
Machine independent loader features
Loader Design Options.

e Linker and Loader

©)
@)

o

Loading: Brings the object program into memory for execution.

Relocation: Modifies the object program so that it can be loaded at an address different
from the location originally specified.

Linking: Combines two or more separate object programs and supplies the information
needed to allow references between them.

Loader is a system program that performs the loading function. Many loaders also
support relocation and linking.

Linker (linkage editor) is a system program that performs the linking operations and
need a separate loader to handle relocation and loading.

Linking Loader is a system program that having both linking and loading capabilities.

Basic Loader Functions
= Bringing an object program into memory.
= Starting its execution.

Basic Loader Functions

= Allocation: Allocates the space for program in the memory, by calculating the size
of the program. Allocation is done by the programmer.

= Linking: It resolves the symbolic references (code/data) between the object modules
by assigning all the user subroutine and library subroutine addresses. Linking is done
by the programmer.

= Relocation: There are some address dependent locations in the program, such
address constants must be adjusted according to allocated space. Relocation is done
by the assembler.

= Loading: Places all the machine instructions and data of corresponding programs
and subroutines into the memory. Loading is done by the loader.

Type of loaders

= Absolute loader

= Bootstrap loader

= Assemble-and-go loader

= Relocating loader (Relative loader)
= Direct linking loader

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

o Absolute loader

= The object code is loaded to the specified location in the memory.
= All functions are accomplished in a single pass as follows:

e The Header record of object programs is checked to verify that the correct
program has been presented for loading.

e As each Text record is read, the object code it contains is moved to the
indicated address in memory.

e When the End record is encountered, the loader jumps to the specified address
to begin execution of the loaded program.
= No linking and relocation needed.

begin
read Header record
verify program name and length
read first Text record
while record type # 'E’ do
begin

{if object code is in character form, convert into
internal representation}
move object code to specified location in memory
read next object program record
end

jump to address specified in End record
end

= Example: Consider the following object program
HACOPY A001000A00107A
TAOOIOOOAI EAJ.41033A482039A001036,,\28 1030A301015/\&82061A3C1003A00 lOZAA)C1039AOOIOZD
TAOOIOIEAI 5,\0c1036/\48206 1A081033A4C0000A454F4 GAOOOOOBAOOOOOO
TA002039A1EA0d1030’\001030AE0205DA30203FADSZOSDAZB1039\302057A549039A2C205EA38203F
'I‘A002057Al CA101036A4|’.:0000AF IAOOIOOOAOA 1O3OAEOZD79A302064A509039ADC2079A2C1036
'I;\002073A07/\382064A4C0000A05

EQO01000

A (a) Object program

Memory

address Contents
0000 HHIHXHK KX KX MUEARXXXXXX KXXXXXXX KHEEXAXXXXX
0010 EEAXXXX XX HEHAXKXK XXX

I HK KK KX
20390010
0300102A
0810334C

HKAXXHXX XX

KHEX XXX KX X

HEXHXHXXXXX

KM IHXK XX XX

36281030
0Cc103900
O000454F

30101548
102DOC10O
46000003

0000 XKXXXXXXX HHXHXAXNXXNXX xxxxxxxx [+ COPY
- - - - -
- - - - -
- - - - -
2030 XXXXAXXXX KEKXXXKXX xx041030 O0O1030EO
2040 205D3020 3FD8205D 28103030 20575490
2050 392C20SE 38203F10 10364C0OC0C OOF10010
2060 00041030 E0O207930 20645090 39DC2079
2070 2c103638 20644C00 00O Skxxxx €€ 2 3 X X KX
2080 HHEKXNXXKXX AKX XXKXXX

HEHEHXHXXXX

XXX XX XX

-
-
-

(b) Program loaded in memory

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

e Each pair of bytes from the object program record must be packed together into
one byte during loading.
e Eg: Opcode for STL is 14. It is saved in object program as 2 bytes(2
characters). While loading it is converted to single byte(00010100).
e The content of the memory location for which there is no Text record are shown
as XXXX.
= Advantage:
e Simple
e Efficient(less space and loading time)
= Disadvantage:
e Programmer should specify the actual address

o If the system having small memory, only one program can run at a time. So
it does not create much difficulty to specify the address.

o On a larger system, we are supposed to run several independent programs.
It is not easy to specify actual address while writing programs.

e Difficult to use subroutines libraries efficiently.

o If there are multiple subroutines, the programmer must remember the
address of each and use that absolute address explicitly in other subroutines
to perform subroutine linkage.

o Solution: Write relocatable programs instead of absolute ones.

o Bootstrap Loader
= |tis aspecial type of absolute loader.
= When a computer is first turned on or restarted, bootstrap loader is executed.
= This bootstrap loads the operating system into memory.
= The bootstrap itself begins at address O
= |t loads the OS(from device F1) starting at address 0x80.
= The object code having no header record, end record or control information.
= After loading the OS, the control is transferred to the instruction at address 0x80.

0 Bootstrap
Loader “F1” device
S
O.S.
= Algorithm
X =0x80 /linitial location of the OS to be loaded
Loop
{ A=GETC /lread and convert from ASCII to hexadecimal digit
Save the value in the higher order 4 bits of S
A=GETC /Iread and convert from ASCII to hexadecimal digit

Combine the value to form one byte A= (A +S)
Store the value of A to the address in register
X=X+1

3 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

Algorithm for GETC

A = read one character

If A =0x04 then jump to 0x80 //end of file

If A <48 then GETC Il ignore the character if itis <0
A=A-48 /I convert to hexadecimal

If A <10 then return

A=A-7

return

e Register X keeps the address of the next memory location to be loaded.

e GETC is used to read and convert a pair of characters from device F1.

e These 2 hexadecimal digit values are combined into a single byte by shifting the
first one left 4 bit positions and adding the second to it.

e The resulting byte is stored at the address currently in register X.

= Program
BOOT START 0 BOOTSTRAP LOADER FOR SIC/XE
CLEAR A CLEAR REGISTER A TO ZERO
LDX #128 INITIALIZE REGISTER X TO HEX 80
LOOP JSUB GETC READ HEX DIGIT FROM PROGRAM BEING LOADED
RMO A,S SAVE IN REGISTER S
SHIFTL S, 4 MOVE TO HIGH-ORDER 4 BITS OF BYTE
JSUB GETC GET NEXT HEX DIGIT
ADDR S,A COMBINE DIGITS TO FORM ONE BYTE
STCH 0,X STORE AT ADDRESS IN REGISTER X
TIXR X, X ADD 1 TO MEMORY ADDRESS BEING LOADED
J LOOP LOOP UNTIL END OF INPUT IS REACHED
GETC TD INPUT TEST INPUT DEVICE
JEQ GETC LOOP UNTIL READY
RD INPUT READ CHARACTER
coMP #4 IF CHARACTER IS HEX 04 (END OF FILE),
JEQ 80 JUMP TO START OF PROGRAM JUST LOADED
COMP #48 COMPARE TO HEX 30 (CHARACTER ‘0’)
JLT GETC SKIP CHARACTERS LESS THAN ‘0O°
SUB #48 SUBTRACT HEX 30 FROM ASCII CODE
COoMP #10 IF RESULT IS LESS THAN 10, CONVERSION IS
JLT RETURN COMPLETE. OTHERWISE, SUBTRACT 7 MORE
SUB #7 (FOR HEX DIGITS ‘A’ THROUGH ‘F’)
RETURN RSUB RETURN TO CALLER
INPUT BYTE X'Fl’ CODE FOR INPUT DEVICE
END LOOP

= Eg: =C*“D8”

D 8
\L \I/ Converted to ASCII
68 56

J/ J/ Subtract 48
20 8 ASCII to hexadecimal conversion
l l Subtract 7 if it is greater than 9
13 8
4 Prepared By: Dona Jose, AP, CSE

Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV

System Software(S5 CSE)

o Machine-Dependent Loader Feature

= Shortcoming of an absolute loader
e Programmer needs to specify the actual address at which it will be loaded into

memory.

e |t is difficult to run several programs concurrently, sharing memory between

them.

e |tis difficult to use subroutine libraries.

= Solution:

e A more complex loader that provides

o Program relocation

o Program linking
= The machine dependent loader features are

e Relocation
e Linking

= Program Relocation

e Program Relocation
o The object program is loaded into memory wherever there is room for it.
o The actual starting address of the object program is not known until load

time.

e Relocating Loader / Relative Loader: Loaders that allow program relocation.
e Two methods for specifying relocation as part of the object program
o Modification records
o Relocation bits

e Modification records

o A Modification record is used to describe each part of the object code that
must be changed when the program is relocated.
o Used when a small number of relocations is required.

o Format

1 M
27 | Starting address of the field to be modified, relative to the
Vod beginning of the program (HEX)
0a. T

8-9 | Length of the field to be modified, in half-bytes (HEX
Record gm , i

10 | Modification flag (+ or -}

1116 | Extenal symbol whose value is to be added to or sublracted

from the indicated field

Prepared By: Dona Jose, AP, CSE

Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV

System Software(S5 CSE)

o Example
Line Loc Source statement Object code
5 0000 COPY START 0
10 0000 FIRST STL RETADR 17202D
12 0003 LDB #LENGTH 69202D
13 BASE LENGTH
15 0006 CLOOP +JSUB RDREC 4B101036
20 000A LDA LENGTH 032026
25 000D COMP #0 290000
30 0010 JEQ ENDFIL 332007
35 0013 +JSUB WRREC 4B10105D
40 0017 J CLOOP 3F2FEC
45 001A ENDFIL LDA EQF 032010
50 001D STA BUFFER 0F2016
55 0020 LDA #3 010003
60 0023 STA LENGTH 0F200D
65 0026 +JSUB WRREC 4B10105D
70 002A J @RETADR 3E2003
80 002D EOF BYTE C'EOF’ 454F46
95 0030 RETADR RESW 1
100 0033 LENGTH RESW 1
105 0036 BUFFER RESB 4096
125 1036 RDREC CLEAR X B410
130 1038 CLEAR A B400
132 103A CLEAR S B440
133 103C +LDT #4096 75101000
135 1040 RLOOP TD INPUT E32019
140 1043 JEQ RLOOP 332FFA
145 1046 RD INPUT DB2013
150 1049 COMPR A,S A004
155 104B JEQ EXIT 332008
160 104E STCH BUFFER, X 57C003
165 1051 TIXR T B850
170 1053 JLT RLOOP 3B2FEA
175 1056 EXIT STX LENGTH 134000
180 1059 RSUB 4F0000
185 105C INPUT BYTE X'Fl1* Fl
210 105D WRREC CLEAR X B410
212 105F LDT LENGTH 774000
215 1062 WLOOP TD OUTPUT E32011
220 1065 JEQ WLOOP 332FFA
225 1068 LDCH BUFFER, X 53C003
230 106B WD OUTPUT DF2008
235 106E TIXR T B850
240 1070 JLT WLOOP 3B2FEF
245 1073 RSUB 4F0000
250 1076 OuUTPUT BYTE X'05" 05
255 END FIRST

Most of the instructions in this program use relative or immediate
addressing

Lines 15, 35 and 65 are the only items whose values are affected
by program relocation.

The object program should have one modification record for each
value that must be changed during relocation.

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

= The object program is
HCOPY 000000001077
T000000] D1 7202D69202D4B1010360320262900003320074B10105D3F2FEC032010
T00001D130F20160100030F200D4B10105D3E2003454F 46
T0010361D8410B400B44075101000E32019332FFADB2013A00433200857C003B850
T0010531D3B2FEA]340004F0000F 18410774000E32011332FFAS3C0030F 2008B850
T001070073B2FEF4F000005 "
M00000705+COPY

0001405+COPY One modification record for each relocation

M00002705+COPY

ED00000
o Algorithm
Get PROGADDR from Operating System
Read a record from input file
While record type != ‘E’ do
{
If record type = T’ do
{
Move object code from record to location PROGADDR + Specified address
¥
If record type = ‘M’ do
{
Add PROGADDR at the location (PROGADDR + Specified address)
¥
Read next input record
}

o Disadvantage
= |t is not well suited for use with all machine architectures. It is not
suited for standard SIC programs.

e Relocation bits
o Each instruction is associated with one relocation bit
o These relocation bits are gathered into bit masks in a Text record.
= Relocation bit is 0: no modification is needed
= Relocation bit is 1: modification is needed.
o Used when a large number of relocations is required.

o Format
Text record

col1: T

col 2-7: starting address

col 8-9: length (byte)

col 10-12: relocation bits

col 13-72: object code
o Twelve-bit mask is used in each Text record (col:10-12)
o Each text record contains less than 12 words
o Unused words are set to 0
o For absolute loader, there are no relocation bits. Column 10-69 contains

object code.

7 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV

System Software(S5 CSE)

o Example: Relocatable program for standard SIC machine

Line Loc Source statement Object code
5 0000 COPY START 0
10 0000 FIRST STL RETADR 140033
15 0003 CLOOP JSUB RDREC 481039
20 0006 LDA LENGTH 000036
25 0009 COMP ZERO 280030
30 000c JEQ ENDFIL 300015
35 000F JSUB WRREC 481061
40 0012 J CLOOP 3C0003
45 0015 ENDFIL LDA EOF 00002A
50 0018 STA BUFFER 0Cc0039
55 001B LDA THREE 00002D
60 001E STA LENGTH 0C0036
65 0021 JSUB WRREC 481061
70 0024 LDL RETADR 080033
75 0027 RSUB 4C0000
80 002A ECF BYTE C'EOF’ 454F46
85 002D THREE WORD 3 000003
90 0030 ZERO WORD 0 000000
95 0033 RETADR RESW 1
100 0036 LENGTH RESW 1
105 0039 BUFFER RESB 4096
125 1039 RDREC LDX ZERO 040030
130 103C LDA ZERO 000030
135 103F RLOOP D INPUT E0105D
140 1042 JEQ RLOOP 30103F
145 1045 RD INPUT D8105D
150 1048 COMP ZERO 280030
155 104B JEQ EXIT 301057
160 104E STCH BUFFER, X 548039
165 1051 TIX MAXLEN 2C105E
170 1054 JLT RLOOP 38103F
175 1057 EXIT STX LENGTH 100036
180 105A RSUB 4C0000
185 105D INPUT BYTE X'F1' Fl1
190 105E MAXTEN WORD 4096 001000
210 1061 WRREC LDX ZERO 040030
215 1064 WLOOP TD OUTPUT E01079
220 1067 JEQ WLOOP 301064
225 106A LDCH BUFFER, X 508039
230 106D WD OUTPUT DC1079
235 1070 TIX LENGTH 2C0036
240 1073 JLT LOOP 381064
245 1076 RSUB 4C0000
250 1079 OUTPUT BYTE X'05’ 05
255 END FIRST

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV

System Software(S5 CSE)

= The standard SIC machine does not use relative addressing (PC-
relative, Base-relative)

= All instructions expect RSUB need relocation

= Too many modification records are required if we adopt the 1°* method.
So we move to relocation bit method.

= Object program is
HCOPY 000000001074

TAOOUODOAI40033A48103%\000036A280030A300015A48106 1A3C0003’,\00002AA0C0039A00002D
TAOOOOIEAI '@i C0036A48106 1A080033A400000A554F46A000003A000000
TAOOI039AlEﬁF_§_(3AO40030A000030AE0IOSDA30103E;\D81OSDAZ80030,\301057‘,\548039A2C105EA38103F
TAOOIOSZ\OAMI00036A4C0000AF IAOOIOOO

TAOOIOG lAl 9&040030{\}301079}\30106&A50803?,\DC107%\200036A381064AA00000A05

EAODOOOO

e The underlined hexadecimal digits in the object program represent
the bit mask.

e FFC
o FFC-> 111111111100
o All ten words are to be modified

e EO00
o EO00 -> 111000000000
o First three records are to be modified.

o Algorithm

Get PROGADDR from Operating System
Read a record from the input file
While record type = ‘E’ do

{
If record type = T’ do

{
length = second data
mask bits (M) = third data
for i=0 to length do
{
If Mi = 1 then
Add PROGADDR to object code and move that data to the location
(PROGADDR + Specified address)
else
Move object code from record to location PROGADDR + Specified address
}

¥

Read next input record

¥

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

»= Program Linking
e The goal of program linking is to resolve the problems with external references
(EXTREF) and external definitions (EXTDEF) from different control sections.
o EXTDEF (external definition) - The EXTDEF statement in a control
section names symbols that are defined in present control section and may
be used by other sections.

= EQ: EXTDEF LISTA, ENDA

= The Define Record is used to represent symbols in the object program

= Syntax: _
Col. 1 D
Col. 2-7 Name of external symbol defined in this control section
Col. 813 Relative address within this control section (hexadecimal)
Col.14-73 Repeat information in Col. 2-13 for other external symbols

e Eg: D"LISTA "000040"ENDA ~000054
o EXTREF (external reference) - The EXTREF statement names symbols
used in present control section and are defined elsewhere.

= Egq: EXTREF LISTB,ENDB,LISTC,ENDC

= The Refer Record is used to represent symbols in the object program

= Syntax:
Col. 1 R
Col. 2-7 Name of extemal symbol referred to in this control section
Col. 8-73 Name of other extemal reference symbols

e Eg: RMLISTBENDBALISTC "ENDC
e Example: Here are the three programs named as PROGA, PROGB and PROGC,
which are separately assembled and each of which consists of a single control section.
e LISTA, ENDA in PROGA, LISTB, ENDB in PROGB and LISTC, ENDC in PROGC
are external definitions in each of the control sections.
e Similarly LISTB, ENDB, LISTC, ENDC in PROGA, LISTA, ENDA, LISTC, ENDC
in PROGB, and LISTA, ENDA, LISTB, ENDB in PROGC, are external references.
e Each program contains
o Instruction operands (REF1, REF2, REF3).
o Values of data words (REF4 through REF8).
o Consider REF1 in all control sections: +LDA LISTA
= PROGA
e Here LISTA is the label in the current control section.
e The instruction is PC relative and will get the correct object code
(03201D).
= PROGB, PROGMC
o Here LISTA is a reference to an external symbol.
e We will not get the correct object code. Simply set the address
field to 0.
e Also place a modification record in the object program. It instructs
the loader to add the value of the symbol LISTA to this address
field when the program is linked.

10 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

(PROGA)

Loc Source statement Object code

0000 PROGA START 0
EXTDEF LISTA, ENDA
EXTREF LISTB, ENDB,LISTC, ENDC

0020 REF1 LDA LISTA 03201D

0023 REF2 +LDT LISTB+4 77100004
0027 REF3 LDX #ENDA-LISTA 050014
0040 LISTA EQU =

0054 ENDA EQU =

0054 REF4 WORD ENDA-LISTA+LISTC 000014
0057 REF5 WORD ENDC-LISTC-10 FFFFF6
005A REF6 WORD ENDC-LISTC+LISTA-1 00003F
005D REF7 WORD ENDA-LISTA- (ENDB-LISTB) 000014
0060 REF8 WORD LISTB-LISTA FFFFCO

END REF1

Object programs (PROGA)

%{ROGA 000000000063
DLISTA QOOO40ENDA 000054
RLISTB ENDB ,LLISTC ENDC

T0000200A03201D77100004050014

T0000540F000014FFFFF600003E000014FFFFCO
00002405+LISTB
00005406+LISTC

00057,06+ENDC

M00005706-LISTC

0005A06+ENDC
0005AD6-LISTC

MPOOOS5ADGFPROGA

MDO0O0SDO6-ENDB
00005D06+LISTB

0006006 +LISTB

M00006006-PROGA

E000020

11 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV

System Software(S5 CSE)

Loc Source statement Object code
0000 PROGB START 0

EXTDEF LISTB, ENDB

EXTREF LISTA, ENDA, LISTC, ENDC
0036 REFL +LDA LISTA 03100000
003A REF2 LDT LISTB+4 772027
003D REF3 +LDX #ENDA-LISTA 05100000
0060 LISTB EQU %
0070 ENDB EQU X
0070 REF4 WORD ENDA-LISTA+LISTC 000000
0073 REF5 WORD ENDC-LISTC-10 FFFFF6
0076 REF6 WORD ENDC-LISTC+LISTA-1 FFFFFF
0079 REF7 WORD ENDA-LISTA- (ENDB-LISTB) FFFFFO
007¢C REF8 WORD LISTB-LISTA 000060

END

Object programs (PROGB)

ROGB 00000000007 F
DLISTB 000060ENDB ,000070
RLISTA ENDA ,LISTC ENDC

T0000360B0310000077202705100000

TA00007OAOFAOOOOOOAFFFFF6AFFFFFI‘;\FFFFFQ\OOOO60

M000037,05+LISTA
0003EQS+ENDA
MDOOO3EQS-LISTA
0007006 +ENDA

0007006-LISTA
M00007006FLISTC
00007 306+ENDC
MD0007306-LISTC
MD0007606+ENDC
M00007606-LISTC
0007606+LISTA
MD0007906+ENDA
MP0007906-LISTA
00007 CO6+PROGB
?pooo7gpé}LlsrA

12

Prepared By: Dona Jose, AP, CSE

Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV

System Software(S5 CSE)

(PROGC)

Loc Source statement Object code
0000 PROGC START 0

EXTDEF LISTC, ENDC

EXTREF LISTA,ENDA,LISTB,ENDB
0018 REF1 +LDA LISTA 03100000
001C REF2 +LDT LISTB+4 77100004
0020 REF3 +LDX #ENDA-LISTA 05100000
0030 LISTC EQU %
0042 ENDC EQU ¥
0042 REF4 WORD ENDA-LISTA+LISTC 000030
0045 REF5 WORD ENDC-LISTC-10 000008
0048 REF6 WORD ENDC-LISTC+LISTA-1 000011
004B REF7 WORD ENDA-LISTA- (ENDB-LISTB) 000000
004E REF8 WORD LISTB-LISTA 000000

Object programs (PROGC)

PROGC 000000000051
DLISTC 000030ENDC 000042
RLISTA ENDA LISTB ,ENDB

T0000180C03100000,7710000405100000

T0000420F000030000008000011000000000000

MO0001905+LISTA
MO0001DOS+LISTB
ggooozyp;¢ENDA

0002105-LISTA
M 00042\\0€+ENDA
MD0004206-LISTA
M00004206+PROGC
M00004806+LISTA
MO0004BO6+ENDA
MO0004B06-LISTA
M00004B06-ENDB
MO0004BO6+LISTB
MOOOO4EQ6+LISTB
MOO004EO6-LISTA
E

13

Prepared By: Dona Jose, AP, CSE

Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

o Consider REF2: REF2 +LDT LISTB+4
= PROGA, PROGC
e Store the value of constant in the address field(00004)
e There should be one modification record which instructs the loader
to add to this field the value of LISTB.
= PROGB
e LISTB is the label in the current control section.
e The instruction is PC relative and the will get the object code

(772027).
o Consider REF4: REF4 WORD ENDA-LISTA+LISTC
= PROGA
e Here LISTA and ENDA are the labels in the current control
section.

e LISTC is areference to an external symbol.

e The object code is the value of ENDA-LISTA (000014), which is a
temporary value.

e Place a modification record for LISTC

Object programs Memory contents
PROGA | HPROGA e=» 0000
. (REF4) -
TG000530F000014[< ++ * (REF4)
s
: 1 v 4050.0..0....10.000......
@6@ :
h |
. |
= !
LJ
PROGC cecs)
1,: ——-”
/7 + 4112
/ DISTTP00030 (Actual address
// . of LISTC)
/
|" Load addresses
\ PROGA 004000
\\ PROGB 004063
~
PROGO 0040E

e While loading the starting address of
o PROGA is 4000
o PROGB is 4063
o PROGC is 40E2
e Starting address of REF4 in PROGA is 4054(beginning address of

PROGA + 0054)
= PROGB
e Here LISTA, ENDA and LISTC are the references to external
symbols
14 Prepared By: Dona Jose, AP, CSE

Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

e Put 000000 as object code.
e Place modification records for LISTA, ENDA and LISTC
= PROGC
e Here LISTA and ENDA are the references to external symbols
e LISTC is the labels in the current control section.

e The object code is the value of LISTC (000030). While loading PROGC
the address of LISTC may change. So place a modification record for
PROGC.

e Place two more modification records for LISTA and ENDA
e The program in memory after relocation, linking and loading

Memory
address Contents
0000 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
L] = - - B2
- - L - -
- = - - -
3FFO XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
BO00D Hosoe swesw @5 ee sdes = beee oese @ e sem e
K010 Jeoosssos ocosesses sssecess sesseess
4020 03201077 1040C7J05 _ _0014)eeee coveeaea «— PROGA
BO30 Jecoevvoe ossosacs sesessss sesssesas
B08B0 | ecceceree oevo0e0ssee oseesceese osessssse
4050 |iosisnvivs [00Z126J00 00080040 51[000004]
4060 |OOO0O08B3e. ccceceeee ooccceece occeocsse
B070 | eceeoeree ocsscesse ossscesnse ssccasnse
HOBD Joaessosvonw sevaesas -
8090 lewioucce: samssses . 31040 _adrr2027]
40A0 EEBTONOYH .ccenscs samsmein Sasssnes [+—PROGB
HBOBO Jeeceocoes ©oeecvscee osevevees oecsesvsee
40CO
40DO |
40EO [0083. ... ceceecee coseesecae e 000000
40FO0 s o o 00000 TR|0310 406a7710
4100 SOCAOSTO T0DTAL c.oc v cremifoaion o eweie eiaim 4+—PROGC
BL1IO Jocsoivie ,cebesese seeseses &osesss .
4120 ©co0 0000 00412600 00080040 51000004
4130 mx AXXAXXXXXX AXXAXXXNXX AXXXXXXX
4140 XRXXXXX XX XXXXXXXX AXXXXX XXX AAXXXXXX

o Algorithm and Data Structures for a Linking Loader
= |nput: set of object programs (control sections) that are to be linked together.
= Alinking loader usually makes two passes over its input
e Pass 1: Assigns addresses to all external symbols.
e Pass 2: Performs the actual relocation, linking and loading.
= Data structure used is External Symbol Table (ESTAB). The fields are
e Control sections name
e Name each external symbol
e Address of each external symbol
= Two other important variables are:
e PROGADDR (program load address)
o The beginning address in memory where the linked program is to be
loaded.
o lItsvalue is supplied to the loader by the OS.
e CSADDR (control section address)

15 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

o The starting address assigned to the control section currently being scanned
by the loader
= A hashed organization is used for this table
= Passl

e The loader is concerned only with Header and Define records in the control
sections

e The beginning load address for the linked program (PROGADDR) is obtained
from the OS. This becomes the starting address (CSADDR) for the first control
section in the input sequence.

e The control section name from Header record is entered into ESTAB, with
value given by CSADDR. All external symbols appearing in the Define record
for the control section are also entered into ESTAB. Their addresses are
obtained by adding the value specified in the Define record to CSADDR.

e When the End record is read, the control section length CSLTH is added to
CSADDR. This calculation gives the starting address for the next control
section in sequence.

e At the end of Pass 1, ESTAB contains all external symbols defined in the set of
control sections together with the address assigned to each.

e Pass 1 optionally generate load map

HPFPROGA 00000000063
DLISTA OO0OO040QENDA 200054
RLISTBSB AENDB AL!STC ’\E:NDC
HPFPROGB OO0O00000007F - -
1s < z
DLISIR £og0edENDE 000070 Linking Loader
: Pass 1
HPROCC I\()()()()l)()’\()(J(JOSl
DA]_.LSTC A(,()()().]()AHNI)(T r\(.)UU(J‘oZ -
RLISTA .ENDA _LLISTB _LENDE -
. =
= v Load Map
Control Symbol
igcli()r\ o name Address Length
PROCA 4000 0063
LISTA 4040
ENIDA 4054
PROCB 4063 007F
LISTB 40C3
ENDB 4013
rrRoOGC 40E2 0051
LISTC 4112
ENDC 4124
= Pass?
e As each Text record is read, the object code is moved to the specified address +

e When a Modification record is encountered, the symbol whose value is to be
used for modification is looked up in ESTAB.

e This value is then added to or subtracted from the indicated location in memory.

e The last step performed by the loader is usually the transferring of control to the
loaded program to begin execution.

o The End record for each control section may contain the address of the first
instruction in that control section to be executed. Our loader takes this as
the transfer point to begin execution.

o If more than one control section specifies a transfer address, the loader
arbitrarily uses the last one encountered.

16 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV

System Software(S5 CSE)

o If no control section contains a transfer address, the loader uses the
beginning of the linked program (i.e., PROGADDR) as the transfer point.

o Normally, a transfer address would be placed in the End record for a main
program, but not for a subroutine.

Pass 1 Linking Loader Algorithm

Get PROGADDR from OS
CSADDR = PROGADDR \\ for the 1% control section
While not end of input do

{

}

Read the next input record \\ header record for the control section
CSLTH = control section length
Search ESTAB for the control section name
If found then
Set error flag
Else
Enter control section name and CSADDR into ESTAB
While record type != ‘E’ do

{
Read the next input record
If record_type = ‘D’ then
{
For each symbol in the record do
{
Search ESTAB for symbol name
If found then
Set error flag
Else
Enter symbol and (CSADDR + indicated address) into ESTAB
}
¥
}
CSADDR = CSADDR + CSLTH /[starting address of the next control section

Pass 2 Linking Loader Algorithm

CSADDR = PROGADDR \\ for the 1% control section
EXECADDR = PROGADDR
While not end of input do

{

Read the next input record \\ header record for the control section
CSLTH = control section length
While record type != ‘E’ do
{
Read the next input record
If record type = ‘T’ then

{

17

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

file://///for
file://///for

Module IV

System Software(S5 CSE)

If the object code is in character form then
Convert it into internal representation
Move the object code from record to location (CSADDR + specified address)

}
Else if record type = ‘M’ then

{

Search ESTAB for modification symbol name

If found then
Add or subtract the symbol value at location (CSADDR + specified address)

Else
}
}
If an address is specified in End record then

EXECADDR = CSADDR + specified address
CSADDR = CSADDR + CSLTH

Set error flag

}
Jump to location given by EXECADDR to start execution of the program

= We can make the linking loader algorithm more efficient by
e Assigning a reference number to each external symbol referred to in a control
section
o 01: control section name
o 02~: external reference symbols
e Use this reference number (instead of the symbol name) in Modification records
e Advantage of this reference-number mechanism:
o It avoids multiple searches of ESTAB for the same symbol during the
loading of a control section.
= Search of ESTAB for each external symbol can be performed once and
the result is stored in a table indexed by the reference number.
= The values for code modification can then be obtained by simply
indexing into the table.

PROGA PROGB
Ref No. Symbol Address Ref No. Symbol Address
1 PROGA 4000 1 PROGB 4063
2 LISTB 40C3 2 LISTA 4040
3 ENDB 40D3 3 ENDA 4054
4 LISTC 4112 4 LISTC 4112
5 ENDC 4124 5 ENDC 4124
PROGC
Ref No. Symbol Address

1 PROGC 4063

2 LISTA 4040

3 ENDA 4054

4 LISTB 40C3

5 ENDB 40D3

18

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV

System Software(S5 CSE)

The object program will be as follows
HPROGA 000000000063

DI_1STA ,0O00040ENDA 000054
RO2L ISTB Q3FNDB Q41 I1STC QAENDC

T.0000200A03201D77100004950014

t9000540EQabO14EFFFE§OOOO3FQOOO14EFFFGO

MO0002405+
M00005406+04
MQ0005706:+Q5
MO0005706_Q4.
MOOOO5A06+05
MOOOO5A06—Q4-
MOOOO0S5A06301
MO00050065Q3
MO0005D06+Q2.
MO0006006+02
MO0006006—01
E000020

HPROGB 00000000007F
DLISTB OOOOGOENDB 000070
RO2LISTA O3ENDA 04LISTC O5ENDC

T0000360B0310000077202705100000

T0000700F000000FFFFF6FFFFFFFFFFFO000060
M00003705+02
MOOOO3E05+03
MOOOO3E05-02
MO0007006+03
MO0007006-02
MO0007006+04
MO0007306+05
MO0007306-04
M00007606+05
MO0007606-04
M00007606+02
MOO007906+03
M00007906-02
MO0007C06+01
M00007C06-02
E

HPROGC 000000000051

DLISTC OOOOC30ENDC 000042
RO2LISTA O3ENDA 04LISTB OSENDB

T0000180C031000007710000405100000

T0000420F00003000000800001 1000000000000

MO0001905+02
MO0001D05+04
MO0002105+03
M00002105-02
M00004206+03
M00004206-02
M00004206+01
MO0004806+02
MO0004B06+03
MO0004B06-02
MO0004B06-05
MO0004B06+04
MOO004E06+04
MOOOO4EQ6-02
E

o MACHINE-INDEPENDENT LOADER FEATURES

= Loading and linking are OS service functions.
= Following are the machine-independent loader features

Automatic Library Search
Loader Options

= Automatic Library Search(Automatic Library Call)

This feature allows a programmer to use standard subroutines without explicitly
including them in the program to be loaded.
This feature allows the programmer to use subroutines from one or more
libraries (eg: mathematical or statistical routines).
These subroutines are automatically retrieved from a library, linked with main

program and loaded as they are needed

during linking.

19

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

e The programmer needs to mention these subroutine names as external
references in the source program.

e Steps:

o Linking loaders that support automatic library search must keep track of
external symbols that are referred to in the primary input to the loader.

o At the end of Pass 1, the symbols in ESTAB that remain undefined
represent unresolved external references.

o The loader searches the library or libraries specified for routines that
contain the definitions of these symbols, and processes the subroutines
found by this search exactly as if they had been part of the primary input
stream.

o The subroutines fetched from a library in this way may themselves contain
external references. It is therefore necessary to repeat the library search
process until all references are resolved.

o If unresolved external references remain after the library search is
completed, these must be treated as errors.

e Italso allows the programmer to override standard subroutines.

o Example
= Suppose the main program refers to a standard subroutine SQRT.
= A programmer wanted to use a different version of SQRT by including

it as input to the loader.
= By the end of Passl of the loader, SQRT would already be defined, so
it would not be included in any library search.

e The libraries to be searched by the loader ordinarily contain assembled or
compiled versions of the subroutines (i.e., object programs)

e In most cases a special file structure is used for the libraries. This structure
contains a directory that gives the name of each routine and a pointer to its
address within the file.

e Some operating systems can keep the directory for commonly used libraries
permanently in memory.

e The same technique applies equally well to the resolution of external references
to data items

= Loader Options
e Many loaders allow the user to specify options that modify the standard
processing.
e Many loaders have a special command language that is used to specify loader
options.
e Different ways to provide these control statements
o A separate input file to the loader that contains such control statements.
o These statements are embedded in the primary input stream between object
programs
o Include these statements in source program, and the assembler retains these
commands as a part of the object program.

20 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV

System Software(S5 CSE)

Loader option 1: Allows the selection of alternative sources of input.

©)

Command: INCLUDE program-name (library-name)
Direct the loader to read the designated object program from a library and

treat it as if it were part of the primary loader input.

Loader option 2: Allows the user to delete or change external symbols or entire
control sections.

©)

Command: DELETE csect-name

Instruct the loader to delete the named control section(s) from the set of
programs being loaded.

Command: CHANGE namel, name2

The external symbol namel to be changed to name2.

Example: Suppose we have a main program COPY and two subroutines
RDREC and WRREC, each of these are separate control sections. Suppose
that READ and WRITE are the two utility subroutines which perform the
functions as RDREC and WRREC. The following commands allow the
main program COPY to use these utility subroutines.

INCLUDE READ(UTLIB)
INCLUDE WRITE(UTLIB)
DELETE RDREC, WRREC
CHANGE RDREC, READ
CHANGE WRREC, WRITE

= |t direct the loader to include control sections READ and WRITE from
the library UTLIB

= Delete the control section RDREC and WRREC

= All external references to RDREC is changed to refer to symbol READ

= All external references to WRREC is changed to refer to symbol
WRITE

Loader option 3: Involves the automatic inclusion of library routines to satisfy
external references.

o

Command: LIBRARY MYLIB
Such user-specified libraries are normally searched before the standard
system libraries. This allows the user to use special versions of the standard
routines.
Suppose the main function of a program is used to gather and sort data. The
program also performs an analysis of data using the routines STDDEV,
PLOT and CORREL from a statistical library. Suppose this statistical
analysis is not performed in a particular execution, use the following
command.

NOCALL STDDEV, PLOT, CORREL
This instructs the loader that these external references are to remain
unresolved. This avoids the overhead of loading and linking the unneeded
routines, and saves the memory space that would otherwise be required.

Loader option 4: It is possible to specify that no eternal references be resolved
by library search. This means that an error will result if the program attempts to

21

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV

System Software(S5 CSE)

make such an external references during execution. This option is useful when
programs are to be linked but not executed immediately.
Loader option 5: Can control output from loader
o A load map may be generated during loading process
o Through control statements the user can specify whether or not such a map
is to be printed at all.
o Ifamap is desired, the level of detail can be selected.
= Ex: the map may include control section name and address only
Loader option 6: Ability to specify the location at which execution is to begin
(Overriding any information given in the object program).
Loader option 7: To control whether or not the loader should attempt to
execute the program if errors are detected during the load operation.
o Ex: unresolved eternal references.

O LOADER DESIGN OPTIONS

= Linking loader:

The source program is assembled or compiled, producing an object program
which may contain several control sections.

A linking loader performs all linking and relocation operations, including
automatic library search if specified, and loads the linked program directly into

memory for execution.
Object
program(s)

Linking
loader

Memory

Disadvantage: The linking loader searches the libraries and resolves external
references every time the program is executed.
Advantage:

o When the program is used so infrequently, it is not worthwhile to store the
assembled version in a library. In such cases it is more efficient to use
linking loader.

o Itisused in a program development and testing environment

There are two alternatives design options:

o Linkage Editor

o Dynamic Linking

Linkage Editor

o Which perform linking prior to load time

22

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV

System Software(S5 CSE)

It produces a linked version of the program (load module or executable
image), which is written to a file or library for later execution.

A simple relocating loader can be used to load the linked version of
program into memory for execution.

Object
programis)

Relocating
loader

+

Memory

The Linkage Editor performs relocation of all control sections relative to
the start of the linked program.
The only object code modification necessary is the addition of an actual
load address to relative values within the program.
Relocation is indicated by some mechanisms such as Modification Records
or Bit Masks.
Advantage:
= The loading can be accomplished in one pass with no external symbol
table required. This involves much less overhead than using a linking
loader
= Reduce the time: If Resolution of external references and library
searching are only performed once. It will reduces the load time.
One variant: If the actual address at which the program will be loaded is
known in advance, the linkage editor can perform all of the needed
relocation. The result is a linked program that is an exact image of the way
the program will appear in memory during execution. In this case only an
absolute loader is needed to load object code into memory.
Linkage editors can perform many useful functions
= The linkage editor can be used to replace the subroutines in the linked
version
e Eg: Suppose PLANNER is a program that uses a large number of
subroutines. One subroutine among them is PROJECT. We can
write a new version of PROJECT to improve its efficiency. After
the new version of PROJECT is assembled, the linkage editor can
be used to replace this subroutine in the linked version of all the
other subroutines. Use the following code for this purpose.

23

Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

INCLUDE PILANNER(PROGLIB)
DELETE PROJECT

INCLUDE PROJECT(NEWLIB)
REPLACE PILANNER(PROGLIB)

= Linkage editors can also be used to build packages of subroutines or
other control sections that are generally used together.

INCLUDE READR(FTNLIB)
INCLUDE WRITER(FINLIB)
INCLUDE BLOCK(FTNLIB)
INCLUDE DEBLOCK(FTINLIB)
INCLUDE ENCODE(FINLIB)
INCLUDE DECODE(FTNLIB)
SAVE FTNIO(SUBLIE)

e Suppose there are few closely related subroutines in the directory
FTNLIB. The above command sequence combines these
subroutines from the directory FTNLIB and produces a linked
module called FTNIO. It is then insert in to the directory SUBLIB.
Thus the search of SUBLIB before FTNLIB would retrieve
FTNIO instead of the separate routines.

e Dynamic Linking (Dynamic Loading or Load on call)
o The linking function is performed at execution time.
o A subroutine is loaded and linked to the rest of the program when it is first
called
o Dynamic linking provides the ability to load the routines only when they
are needed
o Advantage:
= Allow several executing programs to share one copy of a subroutine or
library
= Allow to share one object by several programs:

e In object-oriented system, it allows the implementation of the
object and its methods to be determined at the time the program is
run.

= Load the routines only when they are needed:

e Suppose a program contains subroutines that correct errors in the
input data during execution. If such errors are rare, this subroutine
may not be used for all executions. Dynamic linking provides the
ability to load the routines only when they are needed. This will
save time and memory space.

= Avoid to load the entire library for each execution

e Suppose a program uses a library that contains large number of
subroutines. The exact routine can not be predicted until the
program examines its input. Dynamic linking loads the required
subroutines instead of entire library for each execution.

24 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

o Dynamic loading must be called via an operating system service requests
(Load-and-call services)
= OS examines its internal tables to determine whether or not the routine
is already loaded
= |f not present
e Routine is loaded from library
e Control is passed from OS to the called subroutine
e Subroutine is finished
= Else

e Control is passed to a subroutine which is already in memory

yynamic
loader .

Load-and-call I | N
EARHANDL ’ N

User
program

S —
ERRHANDL

Ry [

(a) (b)
— — s
|- —— -
|
Dynam Dyna [P Dynam
loade | loader b= ‘ oad
Load-and-call
| ERRHANDL
|
..... r User User
prograrr program program
- — } % - ‘@
| ERRHANDL [ERRHANDL ERRHANDL |
r_ el | Sniad & Ry iy -

(c)

(d)

(e)

= Fig (a): The user program contains a JSUB instruction referring to an
external symbol. The program makes a load-and-call service request to
OS. The parameter of this request is the symbolic name of the routine
to be called.

= Fig (b): OS examines its internal tables to determine whether or not the
routine is already loaded. If necessary, the routine is loaded from the
specified user or system libraries.

= Fig (c): Control is then passed from OS to the routine being called

» Fig (d): When the called subroutine completes it processing, it returns
to its caller (i.e., OS). OS then returns control to the program that
issued the request.

25 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

= Fig (e): If a subroutine is still in memory, a second call to it may not
require another load operation. Control may simply be passed from the
dynamic loader to the called routine.
= This subroutine should retain in memory for later use as long as there
is enough space. If the program requires more space, it may removed
from memory.
o Binding of the name to an actual address is delayed from load time until
execution time
= Bootstrap Loaders
e Given an idle computer with no program in memory, how do we get things
started?
With the machine empty and idle there is no need for program relocation.
We can specify the absolute address for which the OS is first loaded.
An absolute loader is used to accomplish this task.
Different options:
o Required an operator to enter the object code for an absolute loader into
memory using switches on the computer console.
= Disadvantage: Inconvenient and error prone
e The absolute loader program may permanently resident in a ROM.
o When some hardware signal occurs (the operator pressing a system start
switch), the machine begins to execute this ROM program.
o There are 2 options
= The program is executed directly in the ROM
= The program is copied from ROM to main memory and executed there.
o Disadvantage:
= Some systems do not have such read only storage
= It is inconvenient to change the ROM program, if the modification in
the absolute loader is required.
e Have a built in hardware function (or a short ROM program) that reads a fixed
length record from some device into memory at a fixed location.
o This device may be selected via console switches.
o After the read operation is complete, control is automatically transferred to
the address in memory where the record was stored.
o This record contains machine instructions that load the absolute program
that follows.
o The first record is generally referred to as bootstrap loader
o This first record causes the reading of others, and these in turn can cause
the reading of still more records — hence the term boots trap.
o Such a loader is added to the beginning of all object programs.
o This includes the OS itself and all stand-alone programs that are to be run
without an OS.

26 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)
Previous Year University Questions

1. Give the algorithm for an absolute loader

2. Given an idle computer with no programs in memory, how do we get things started?

3. What is the use of bitmask in program relocation? Illustrate with example

4. Describe the data structures used for the linking loader algorithm. Give the algorithm for pass
1 of the linking loader.

5. Which are the data structures used during the operation of a linking loader? Write the
algorithm for Pass 2 of a Linking Loader

6. Give the algorithm for pass 2 of a linking loader.

7. With the data structures used, state and explain two pass algorithm for a linking loader.

8. Develop the records (excluding header, text and end records) for the following control

section named COPY

Loc Source Statement
0000 COPY START 0
EXTDEF BUFFER, BUFFEND, LENGTH
EXTREF RDREC, WRREC
0000 FIRST STL RETADR
0003 CLOOP +JSUB RDREC
0007 LDA LENGTH
000A COMP #0
000D JEQ ENDFIL
0010 +JSUB WRREC
0014 J CLOOP
0017 ENDFIL LDA =C ‘EOF’
001A STA BUFFER
001D LDA #3
0020 STA LENGTH
0023 +JSUB WRREC
0027 J @RETADR
002A RETADR RESW 1
002D LENGTH RESW 1
LTORG
0030 * =C ‘EOF’
0033 BUFFER RESB 4096
1033 BUFEND EQU *
1000 MAXLEN EQU BUFEND-BUFFER

9. Write notes on machine independent loader features.

10. Explain any one machine independent loader feature.

27

Prepared By: Dona Jose, AP, CSE

Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module IV System Software(S5 CSE)

11. What is Automatic Library Search?

12. Write notes on the different loader design options.

13. With a help of neat diagram explain what is a linkage editor?
14. Differentiate between linking loaders and linkage editors

15. What is Dynamic Linking? Explain with example.

28 Prepared By: Dona Jose, AP, CSE
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

