Module 1l System Software(S5 CSE)

MODULE Il
e Assembler design options:
o Machine Independent assembler features
= Literals
= Symbol Defining Statements
= Expressions
= Program blocks
= Control sections
o Assembler design options
= Algorithm for Single Pass assembler
= Multi pass assembler
o Implementation example of MASM Assembler

e Machine Independent assembler features
o Following are the features which do not depend on the architecture of the machine.
= Literals
= Symbol Defining Statements
= Expressions
= Program blocks
= Control sections

o Literals
= Programmers can be able to write the value of a constant operand as a part of the
instruction. Such an operand is called literals.
= A literal is defined with a prefix =
» Eg: LDA =X’05’

= Literals vs Immediate Operand
e Literals
o In case of literals the assembler generates the specified value as a constant at
some other memory location
o Target Address(TA) is the address of this generated constant.
o The addressing mode of this instruction is either PC-relative or base-

relative.
o Eg:

45 001A ENDFIL LDA =C’'EOF’ 032010

93 ___—ITORG
002D % _C'EOF’ AGAFA46

215 1062 WLOOP TD =X'05’ E32017

230 106B wn_..__;x*.os-'---""""" ~ DF20Ug)
1076%%F ——— =X’ 05’ 05

1 Prepared By: Dona Jose, AP, CSE,VICET

Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 11l

System Software(S5 CSE)

In the above example EOF is stored in location(002D)
Consider the following statement in the above program
ENDFILL LDA =CEOF’
It has a 3-byte operand whose value is a character string EOF.
This instruction follows Program Counter Relative addressing mode.
TA= Address of the operand = (002D)
After executing this instruction PC = (001D)
Hence the displacement = TA - PC = (002D) - (001D)= (010)
Therefore, the object code for this instruction is 032010

Consider the following statement in the above program
WLOOP TD =X’0%’
It has a 1-byte operand with hexadecimal value 05.
This instruction follows Program Counter Relative addressing mode.
TA= Address of the operand = (1076)
After executing this instruction PC = (1065)
Hence the displacement = TA - PC = (1076) - (1065)= (011)
Therefore, the object code for this instruction is E32011

Immediate Operand
o In immediate mode the operand value is assembled as part of the instruction
itself.

o Eg:

0020 LDA #03 010003

o We can have literals in SIC, but immediate operand is only valid in SIC\XE
= Literal Pools

All the literal operands used in a program are gathered together into one or more
literal pools.

There are two ways to place the literals in the program

o Can place the literals at the end of the program (After END statement).

o Can place the literals at some other location in the object program.

Reason: keep the literal operand close to the instruction

An assembler directive LTORG is used.

Whenever the LTORG is encountered, it creates a literal pool that

contains all the literal operands used since the beginning of the program

or since the previous LTORG.

It is better to place the literals close to the instructions.

e If the literal operand would be placed too far away from the
instruction referencing, we cannot use PC-relative addressing or
Base-relative addressing to generate Object Program. Here we are
forced to choose extended instruction format. To avoid this we can
use LTORG in different places in the program.

= Literal Table (LITTAB)

A literal table is a data structure created for the literals which are used in the
program.

The literal table contains the literal name, operand value, length and address.

Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 1l System Software(S5 CSE)

e LITTAB is often organized as a hash table, using the literal name or value as the

key
Literal Hex Length | Address
Value
C"EQF' 454F46 3 002D
X"os’ 0s 1 1076

= Implementation of Literals
e During Pass-1:
o The literal encountered is searched in the literal table.
o If the literal already exists, no action is taken.
o If it is not present, the literal name, operand value and length are added to
the LITTAB.
o When encounters a LTORG statement or the end of the program
= The assembler makes a scan of the LITTAB and assigns an address for
each literal not yet assigned an address.
= Update the location counter value.
e During Pass-2:
o Search LITTAB for each literal operand encountered
o Literal values placed at correct locations in the object program.
o If the literal value represents an address in the program, the assembler must
also generate the appropriate Modification Record.

= Allow literals that refer to the current value of the location counter.
e ¥’ denotes a literal refer to the current value of program counter
e Eg: LDB =*
= Duplicate literals
e The same literal used more than once in the program
e eg. WLOOP D =X'05

WD =X’05’
e The assemblers should recognize duplicate literals and store only one copy of
the specified data value

o Symbol Defining Statements
= EQU Statement

e EQU is an assembler directive
e It allows the programmer to define symbols and specify their values
e Syntax: Symbol EQU value
e The value can be a constant or an expression involving constants and any other
symbol which is already defined.
o Eg: A EQU 10
B EQU X-Y
3 Prepared By: Dona Jose, AP, CSE,VICET

Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 11l

System Software(S5 CSE)

e Usage:
o To improve readability in place of numeric values
» Eg: Replace +LDT #4096
With
MAXLEN EQU 4096
+LDT # MAXLEN
o To define mnemonic names for registers
* Eg: Replace RMO 0,1
with
A EQU 0
X EQU 1
RMO A X

e No forward reference
o One restriction with the usage of EQU is whatever symbol occurs in the
right hand side of the EQU should be predefined.
o Eg:

VA X

ALPHA RESW 1 BETA EQU ALPHA
BETA EQU ALPHA ALPHA RESW 1

ORG Statement

ORG is an Assembler directive

Allow the assembler to reset the PC to values

Syntax: ORG value

When ORG is encountered, the assembler resets its LOCCTR to the specified

value

ORG will affect the values of all labels defined until the next ORG

We can return to the normal use of LOCCTR by simply write ORG

ORG is used to control assignment storage in the object program.

No forward reference is allowed

o All symbols used to specify the new LOCCTR value must have been
previously defined.

X ORG ALPHA
BYTE1 RESB 1
BYTE2 RESB 1
BYTE3 RESB 1

ORG
ALPHA RESW 1

o During passl assembler would not know what value to assign to the location
counter in response to the first ORG statement. As a result, the symbols
BYTEL, BYTE2 and BYTE3 could not be assigned during pass 1.

o Expressions

The assemblers allow the expressions as operand

The assembler evaluates the expressions and produces a single operand address or
value

Expressions consist of

Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 11l

System Software(S5 CSE)

Operator: +,-,*,/

Constants

User-defined symbols

Special terms: *, the current value of LOCCTR

Examples
MAXLEN EQU BUFEND-BUFFER
STAB RESB (6+3+2)*MAXENTRIES

BUFEND EQU *
The current value of location counter is assigned to BUFEND.

= Values of terms can be classified as absolute or relative.

Absolute terms
o Independent of program location
o Eg: Constants
MAXLEN EQU 1000

Relative terms
o Defined relative to the beginning of the program
o Eg:

= Labels on instructions

= References to location counter: *

= Expressions can be either absolute or relative

Absolute Expression
o Expression contains only absolute terms
MAXLEN EQU 1000+5
o Relative terms in pairs with opposite signs for each pair
MAXLEN EQU BUFEND-BUFFER
= BUFEND and BUFFER both are relative terms, representing addresses
within the program. The expression BUFEND-BUFFER represents an
absolute value.
= When relative terms are paired with opposite signs, the dependency on
the program starting address is canceled out. The result is an absolute
value.
= No relative term may enter into a multiplication or division operation.
Relative Expression
o Contains an odd number of relative terms, with one more positive term than
negative term.
STAB EQU OPTAB + (BUFEND — BUFFER)
o No relative term may enter into a multiplication or division operation.
= Eg: 3*BUFFER isincorrect.
Expressions that are neither absolute nor relative will lead to assembler error.
o Eg:
= BUFEND+BUFFER
= 100-BUFFER
» 3*BUFFER

= Defining Symbol Types in the Symbol Table

To find the type of expression, we must keep track of the types of all symbols
defined in this program.

Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 11l

System Software(S5 CSE)

For this purpose we need a flag in the SYMTAB to indicate type of value
(absolute or relative) in addition to the value itself.

Symbol Type Value
RETADR R 0030
BUFFER R 0036
BUFEND R 1036
MAXLEN A 1000

With this information the assembler can easily determine the type of each
expression used as an operand and generate Modification Record in the object
program for relative values.

o Program blocks

= The source programs logically contained subroutines, data area etc.

= Within the object program the generated machine instructions and data appeared in
the same order as they were written in the source program.

= Program blocks allow the generated machine instructions and data to appear in a
different order while they are loading in memory.

Separating blocks for storing code, data, stack, and larger data block

= Assembler directive: USE

Syntax: USE [blockname]

USE indicates which portion of the source program belongs to the various
blocks.

At the beginning, statements are assumed to be part of the default block

If no USE statements are included, the entire program belongs to this single
block

Each program block may actually contain several separate segments of the
source program

= Assembler rearrange these segments to gather together the pieces of each block and
assign address

Separate the program into blocks in a particular order

Large buffer area is moved to the end of the object program

Program readability is better if data areas are placed in the source program close

to the statements that reference them.

Consider the following program. Here 3 blocks are used.

o Unnamed (default) block (block no: 0): contains the executable instructions
of the program.

o CDATA block (block no: 1): contains all data areas that are less in length.

o CBLKS block (block no: 2): contains all data areas that consist of larger
blocks of memory

At the beginning, statements are assumed to be part of the default block

The USE statement on line 92 signals the beginning of the block named

CDATA.

The USE statement on line 103 signals the beginning of the block named

CBLKS.

Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module Il System Software(S5 CSE)

e The USE statements on line 123 and 208 resume the default block, and the
statements on line 183 and 252 resume CDATA block.

e Line 107 is shown without a block number because the value of MAXLEN is an
absolute symbol.

Line Loc/Block Source statement Object code
5 0000 0 COPY START 0
10 0000 O FIRST STL RETADR 172063
15 0003 O CLOOP JSUB RDREC 4B2021
20 0006 © LDA LENGTH 032060
25 0009 © COMP #0 290000
30 000C 0 JEQ ENDFIL 332006
35 000F O JSUB WRREC 4B203B
40 0012 0 J CLOOP 3F2FEE
45 0015 © ENDFIL LDA =C*EOF’ 032055
50 0018 0O STA BUFFER 0F2056
55 001B O LDA #3 010003
60 001E O STA LENGTH 0F2048
65 0oz1 o JSUB WRREC 4B2029
70 0024 0 J ERETADR 3E203F
92 0000 1 USE CDATA
95 0000 1 RETADR RESW 1
100 0003 1 LENGTH RESW 1
103 0000 2 USE CBLKS
105 0000 2 BUFFER RESE 4096
106 1000 2 BUFEND EQU *
107 1000 MAXLEN EQU BUFEND-BUFFER
SUBROUTINE TO READ RECORD INTO BUFFER
123 0027 0 USE
125 0027 0 ROREC CLEAR X B410
130 0029 0 CLEAR A B400
132 002B 0 CLEAR] B440
133 002D 0 +LDT H#MAXLEN 75101000
135 0031 0 RLOOP D INPUT E32038
140 0034 0 JEQ RLOOP 332FFA
145 0037 © RD INPUT DB2032
150 0032 0 COMPR A8 A004
155 003C 0 JEQ EXIT 332008
160 003F O STCH BUFFER, X 5TA02F
165 oo4z 0 TIXR T B850
170 0044 0O JLT RLOOP 3B2FEA
175 0047 0 EXIT STX LENGTH 13201F
180 004A O RSUB 4F0000
183 0006 1 USE CDATA
185 0006 1 INPUT BYTE X'F1° F1
SUBROUTINE TO WRITE RECORD FROM BUFFER
208 004D 0 USE
210 004D 0 WRREC CLEAR X B410
212 004F 0 LoT LENGTH 772017
215 0052 0 WLOOP ™D =X'05" E3201B
220 0055 0 JEQ WLOOP 332FFA
225 0058 0 LDCH BUFFER, X 53a016
230 0058 0O WD =X'05’ DF2012
235 005E 0 TIXR T B850
240 0060 0 JLT WLOOP 3B2FEF
245 0063 0 RSB 4FQ000
252 0oo7 1 USE CDATA
253 LTORG
0007 1 * =C'EOF 454F46
000A 1 * =X' 05’ 05
255 END FIRST

Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 11l

System Software(S5 CSE)

= Passl

A separate location counter for each program block

o At the beginning of a block, LOCCTR is set to 0.

o Save and restore LOCCTR when switching between blocks

Assign each label an address relative to the start of the block that contains it.
Store the block name (or number) in the SYMTAB along with the assigned
relative address of the label

At the end of Passl the latest value of LOCCTR for each block indicates the
length of that block.

At the end of Passl the assembler constructs a block table that contains the
block name, block number, starting addresses and length of all blocks.

Block name Block number Address Length

(default) 0 0000 0066

CDATA 1 0066 000B

CBLKS 2 0071 1000
= Pass?

Calculate the address for each symbol relative to the start of the object program
by adding the location of the symbol relative to the start of its block, to the
assigned block starting address.

Eg:

o Consider the instruction LDA LENGTH

o The relative location of LENGTH in CDATA block = 0003

o Starting address for CDATA = 0066

o Therefore, TA = 0003 + 0066 = 0069

o This instruction is to be assembled using PC-relative addressing mode.

o After fetching this instruction, PC = 0009. Since the default block starts at

location 0000, this address = 0000 + 0009 = 0009
o Displacement = TA-PC = 0069 — 0009 = 0060
o Therefore, the object code is 032060

HCOPY 000000001071

I:\UOOOOOhl EJ,\172063A&B202 JAO 3206(}\2 90{]003\332006A¢’c5203BA3F2FEEA03205 5ﬁDF2056A010003

TO0001EQ90F20484B20293E203F Default(1)
T,\00002?,\l [}\Blo IOAB!*OO,'\B“’OJS'IOI OOOAE32038A332FF%<I)5203%\AOOAJ\332OO%\IS 7A02FA3850
TAUGOUMAO?NBBZFEA’\I 3201 FAA FO000 Default(2)
T.-'\UOO%CAO th l CDATA(2)
TO0004D19B410772017E32018332FFAS3A016DF201288503B2FEESF0000 pgfay(3)
TAOO UOODAO QAQS 4F4 6’\05 CDATA(3)
E000000

A
First 2 text records are generated from lines 5 through 70(default block 1).

No new text record is created for lines 95 through 105, because it is not
generated any code. Next 2 text records come from lines 125 through
180(default block 2). Fifth text record is for CDATA 2 block and so on.

Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 1l System Software(S5 CSE)

Program loadeaed

Source program Object pr rarm in Mmemao
P i Lot ™ FRelative

address

Lime
5]

Crefauit(1)

Deatawit] 1) =
Default{1) L—/ .

Defauitf2) - Drafauitf2)

Dhefauib(3)
COATAL) INERES
COATALZ) DO

_‘ CDATALS) oosD

T

CODATALZ2)

CDATALT)

100
105 CBLES{1)
125

Drefawinf3)

CDATALI)

Drefault(2)
00F1
180
185 CIDnAT AL2)
210
CBLKS(1)
Dreafault{3)
245
253 CDATAI)
1070

e The loader loads the default block in the memory from location 0000 to 0065.
CDATA will occupy locations from 0066 through 0070. CBLKS will occupy

locations 0071 through 1070.
e CDATA(1) and CBLKS(1) are not present in object program. Storage will
automatically be reserved for these areas when the program is loaded.

= Benefits of Program Blocks
e Here the larger buffer area is moved to the end of the object program. So we can
avoid the use of extended instruction format.
e Program readability is improves if the definition of data areas are placed in the
source program close to the statements that reference them.

Pass 1 Algorithm
Begin
block number = 0
LOCCTRJ[i]=0forall i
Read the first input line
If OPCODE = ‘START’ then
{
Write line into intermediate file
Read next input line
¥
While OPCODE != ‘END’ do
{ If OPCODE = ‘USE’ then
{ Ifthere is no operand name then block name = Default
Else block name = OPERAND name
If there is no entry for block name in block table then
Insert (block name, block no++) in to block table
i = bock number for block name
if there is not a comment line then
{ [Ifthereisasymbol inthe LABEL field then

Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 11l

System Software(S5 CSE)

End

}
¥

{

Search SYMTAB for LABEL

If found then Set error flag

Else Insert (LABEL, LOCCTRYi], block number) into SYMTAB
}
Search OPTAB for OPCODE
If found then LOCCTR([i] = LOCCTRJi] +3
Else if OPCODE = ‘WORD’ then LOCCTR([i] = LOCCTRJi] +3
Else if OPCODE = ‘RESW’ then LOCCTR][i] = +3 * #OPERAND
Else if OPCODE = ‘RESB’ then LOCCTR][i] = + #OPERAND
Else if OPCODE = ‘BYTES'’ then LOCCTR(i]= +length of the constant
Else Set error flag

¥

Write line into intermediate file
Read next input line

LENGTH][i] = LOCCTR(i] for all i

Address[0] = starting address

Address[i] = Address[i-1] + Length[i-1] for all i=1 to max(block number)
Insert (Address[i], Length[i]) in block table for all i

Pass 2 Algorithm
If OPCODE = 'USE' then

set block number for block name with OPERAND field

search SYMTAB for OPERAND
store symbol value + address [block number] as operand address

end {Pass 2}

Control sections

Program blocks v.s. Control sections

Program blocks: Segments of code that are rearranged within a single object
program unit

Control sections: Segments of code that are translated into independent object
program units

These are most often used for subroutines or other logical subdivisions of a program
The programmer can assemble, load, and manipulate each of these control sections

separately

Assembler directive: CSECT

e Syntax: secname CSECT

Separate location counter for each control section. Initial value of the location
counter is 0.

Instructions in one control section may need to refer to instructions or data located in
another section. Assembler has no idea where any other control sections will be
located at execution time.

10

Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 1l System Software(S5 CSE)

It is necessary to provide some means of linking them together. For this purpose we
can use the following 2 assembler directives
e External definition EXTDEF symboll,symbol2, ,sSymboln
o Define symbols that are defined in this control section and may be used by
other sections
o Ex: EXTDEF BUFFER, BUFEND, LENGTH

e External reference EXTREF symboll,symbol2, ,Symboln
o Define symbols that are used in this control section and are defined
elsewhere

o Ex: EXTREF RDREC, WRREC
o To reference an external symbol, extended format instruction is needed.

The following program consist of 3 control sections
e COPY: Main program. This section continues until the CSECT statement on
line 109.
e RDREC: Subroutine. This control section is from line no 109 to 190.
e WRREC: Subroutine. This control section is from line no 193 to 255.
Ex: Consider the instruction
15 0003 CLOOP +JSUB RDREC
RDREC is an external reference.
The assembler has no idea where RDREC is
The assembler inserts an address of zero.
The proper address to be inserted at load time
Can only use extended format to provide enough room (that is, relative
addressing for external reference is invalid)
The object code is: 4B100000
e The assembler generates information for each external reference that will allow
the loader to perform the required linking.
= Ex: Consider the instruction
160 0017 +STCH BUFFER,X
e BUFFER is an external reference. The assembler has no idea where BUFFER is
e The assembler inserts an address of zero
e The object code is: 57900000
= Ex: Consider the instruction
190 0028 MAXLEN WORD BUFEND-BUFFER
BUFEND and BUFFER are two eternal reference symbols.
Assembler inserts a value of 0
The object code is: 000000
When the program is loaded, the loader will add to this data area the address of
BUFEND and subtract from it the address of BUFFER.
= Ex: Consider the instruction
107 1000 MAXLEN EQU BUFEND-BUFFER
e BUFEND and BUFFER are defined in the same control section and the
expression can be calculated immediately
= Restriction

11 Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module Il System Software(S5 CSE)

e Both terms in each pair of an expression must be within the same control
section
o Legal: BUFEND-BUFFER
o Illegal: RDREC-COPY

Line Loc Source statement Object code
5 0000 COPY START 0
B EXTDEF BUFFER, BUFEND, LENGTH
7 EXTREF RDREC, WRREC
1 0000 FIRST STL RETADR 172027
15 0003 CLOOP +JSUB RDREC 48100000
20 0007 LDA LENGTH 032023
25 000A COMP #0 290000
30 000D JEQ ENDFIL 332007
35 0010 +JSUB WEREC 48100000
40 0014 J CLOOP 3F2FEC
45 0017 ENDFIL LDA =C'EOF’ 032016
50 001Aa STA BUFFER 0F2016
55 001D LDA #3 010003
60 0020 STA LENGTH 0F200A
65 0023 +JSUB WRREC 4B100000
70 0027 J ERETADR 3E2000
95 002A EETADR RESW 1
100 002D LENGTH RESW 1
103 LTORG
0020 * =C’'EQF’ 454F46
105 0033 BUFFER RESB 4096
106 1033 BUFEND EQU *
107 1000 MAXTL.EN EQU BUFEND-BUFFER
109 0000 RDREC CSECT
110 -
115 . SUBROUTINE TO READ RECORD INTCO BUFFER
120 -
122 EXTREF BUFFER , LENGTH , BUFEND
125 Q000 CLEAR X B410
130 0002 CLEAR p:N B40O
132 o004 CLEAR S B440
133 Q006 Lo MAXLEN 77201F
135 o009 RLOOP D INEFUT E3201B
140 ooocC JEQ RLOOP 332FFA
145 000F RD INPUT DB2015
150 0012 COMPR A,S 2004
155 Q014 JEQ EXTIT 332009
160 0017 +STCH BUFFER, X 57500000
165 aolB TIXR T B850
170 golp JLT RLOOP 3BZ2FE9
175 aonzo EXIT +ST¥ LENGTH 13100000
180 0024 RSUB 470000
185 aoz7 INPUT BYTE X'Fl" Fl
190 oo0z8 MAXT.EN WORD BUFEND-BUFFER 000000
193 0000 WRREC CSECT
195 .
200 . SUBRCUTINE TO WRITE RECORD FROM BUFFER
205 .
207 EXTREF LENGTH, BUFFER
210 0000 CLEAR X B410
212 0002 +LDT LENGTH 77100000
215 00086 WLOQP D =3'05" E32012
220 0008 JEQ WLOOP 332FFA
225 oooc +LDCH BUFFER, X 53900000
230 0010 WD =X'05" DF2008
235 0013 TIXR T B850
240 0015 JLT WLOOP 3B2FEE
245 0018 RSUB 4F0000
255 END FIRST
001B * =X'05" 05
12 Prepared By: Dona Jose, AP, CSE,VICET

Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module Il System Software(S5 CSE)

= The assembler must include information in the object program that will cause the
loader to insert proper values where they are required. Define Record; Refer Record
and Modification Record are used for this purpose.

Column Contents

1 D
Define 2-7 Name of external symbol defined in this control section
Record 8-13 Relative address of symbol within this control section (HEX)
14-73 Repeat information in Col. 2-13 for other external symbols

1 R

Refer — .
R q 2-7 Name of external symbol referred to in this control section
ecor 8-73 Names of other external reference symbols
1 M
2-7 Starting address of the field to be modified, relative to the
Mod beginning of the program (HEX)
od.
8-9 Length of the field to be medified, in half-bytes (HEX
Record J =

10 Modification flag (+ or -)

11-16 External symbol whose value is to be added to or subtracted
from the indicated field

= The object program corresponding to the above is

HﬁCﬂPﬁ' EUUDDDﬁDUlDJJ

DﬁBUFFEFjgﬂﬂl:ljjlnEUFEHDﬁDC'IDJJI‘LEHGTHPDDDZI:

ZEMRDREC ﬁH’RREC

TﬂﬂﬂUUDDﬂl Dﬂl?EDE ?AGBIDUDUDADSZDE ?5-? QDDDE?INEEEDQ?I&ILBIUGGIJGAB I"E}'EL:I_\DJZDLE:_E]FEG L&
T00001DODOIC003I0F2Z00ALRIODO0O0IEZOOD

TﬂUDOUJ q_lDJﬁﬁS-‘iFﬂﬁ

H'.EJIUCIDI}ﬁnDSn‘I-RDEEC

HAEIDDEII]hDj.;-I-rIlHEC

B'I?EJDUDE ﬁn05n+lurRHEC

EﬁUDDDDD

E'S,'II.IIREL' IPI}DEI'IJ E&\DDDGZE

HHBUFFEHJ.‘I.ENGII:&.'BUFEND

TOOOOOOIDEL LOB4 UL!.IIIEETJ_,\??ED] EE3201BI332FFADBI0L 5400432320095 7900000BBS0
'll',Pﬂ'ﬂ'Dl DADI'E‘FHZFB?AIE L0 Dﬂﬂ- FOOOOFLOOOOOO

HOOOOLEDS+BUFFER

%EIIGUDE lnﬂ-fh-lrl..E NGTH

J"IE_LU'UDDZHJ_‘G 6A+IU FEND

i'[fgli_}D-EI oz Ehﬂ E}:EUFFEE

E

'.‘%"II-I'RREC I_{.IOUCIUCIAUU 0d1cC

RLENCTHBUFFER

Tﬂﬂﬂﬂﬂﬂﬂnl Cﬁﬂ#lﬂﬁ??lﬂﬂﬂﬂq\lﬂlzﬂl 2’\332!‘: :’:,‘.SE‘J{IGEI]ELIJFE DCIBnEE 51]:'[3 B2 FEEH#FGDOQ_'GS
HHUUUDDJAUSJ_TLENGTH

HHCICIDGDIJI"G 5ﬂ+ BEUFFER

E

13 Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 1l System Software(S5 CSE)

e Assembler Design Options
o Single Pass Assembler
o Multipass Assembler

o Single Pass Assembler
= The main problem in designing the assembler using single pass was to resolve
forward references. There are two types of forward references.
e Forward reference to data items
o Solution
= Define all the storage reservation statements at the beginning of the
program rather at the end.
e Forward jumping: Forward reference to labels on the instructions
o Solution
= Insert (label, address_to_be modified) to SYMTAB
= Usually, address_to_be_modified is stored in a linked-list
= There are two types of one-pass assemblers:
e Load-and-go assemblers:
Generates object code directly in memory for immediate execution.
No object program is written out, no loader is needed.
The actual address must be known at assembly time.
It is useful in a system with frequent program development and testing
o Programs are re-assembled nearly every time they are run.
e Object Program Output Assembler:
o This assembler produces the usual kind of object code for later execution.
o This assembler is used on systems where external working storage devices
are not available.
» Load-and-go assemblers Algorithm
e When a forward reference is encountered
o Omits the operand address if the symbol has not yet been defined
o Enters this undefined symbol into SYMTAB and indicates that it is
undefined
o Adds the address of this operand address to a list of forward references
associated with the SYMTAB entry
e When the definition for the symbol is encountered, scans the reference list and
inserts the address.
e At the end of the program, reports the error if there are still SYMTAB entries
indicated undefined symbols. Otherwise jump to the location specified in END
statement.

@)
@)
@)
@)

14 Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module Il

System Software(S5 CSE)

= The following program avoids forward data reference problem

Line Loc Source statement Object code
0 1000 COPY START 1000 -
1 1000 EQF BYTE C’EQF’ 454F46
2 1003 THREE WORD 3 000003
3 1006 ZERO WORD 0 000000
4 1009 RETADR RESW 1
5 1o00C LENGTH RESW 1
5] 100F BUFFER RESB 4096
)
10 200F FIRST STL RETADR 141009
15 2012 CLOQOP JSUB RDREC 48203D
20 2015 LDA LENGTH 00100cC
25 2018 CoMP ZERO 281006
30 201B JEQ ENDFIL 302024
35 201E JSUB WRREC 482062
40 2021 J CLOOP 302012
45 2024 ENDFIL LDA EOF 001000
50 2027 STA BUFFER 0C1l00F
55 202A LDA THREE 001003
60 202D STA LENGTH 0cl00cC
65 2030 JSUB WRREC 482062
70 2033 LDL RETADR 081009
75 2036 RSUBE 4c0000

SUBROUTINE TO READ RECORD INTO BUFFER

121 2039 INPUT EYTE X'Fl- Fl

122 203A MANT,EN WORD 4096 001000
124

125 203D RDREC LDX ZERO 041006
130 2040 LDA ZERO 001006
135 2043 RLOOP D INPUT E02039
140 2046 JEQ RL.OOP 302043
145 2049 RD INPUT D82039
150 204C coMP ZERO 281006
155 204F JEQ EXIT 30205B
160 2052 STCH BUFFER, X 54900F
165 2055 TIX MAXT.EIN 2C203A
170 2058 JLT RLOOP 382043
175 2058 EXIT STX LENGTH 10100C
180 205E RSUB 4C0000

SUBROUTINE TO WRITE RECORD FROM BUFFER

206 2061 OUTPUT BYTE X057 05

207 .

210 2062 WEEREC LDX ZERO 04100e
215 2065 WLOOF D OuUTFUT E02061
220 2068 JEQ WLCOP 302065
225 206B LDCH BUFFER, X 50900F
230 206E WD QUTPUT DC2061
235 2071 TIX LENGTH 2Cclooc
240 2074 JLT WLCOP 382065
245 2077 RSUB 4C0000
255 END FIRST

= In the main subroutine RDREC(line 15), WRREC(line 35, line 65) and

ENDFILL(line 30) are forward references.

= After scanning line 40 of the above program

15

Prepared By: Dona Jose, AP, CSE,VICET

Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module Il System Software(S5 CSE)
Memo > ' — =
addresr: Contents Symbol Value
1000 454F4600 00030000 O0OXXXXXX XXXXXXXX LENGTH |100C
1010 XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX RDREC * I .__,13013 I ﬂ
" {THREE |1003
2000 xxxxx&mxi%kﬂ-xi)‘(;&;xx xxxxxxi ZERO 1006
2010 10024 00100C 28100630 48 e
2020 E=Bcz012 o — s *‘1 = ’l 20":11]
. EOE_____ | 1000
. ENDFIL | * 7;-;420101 0]
RETADR |1009
BUFFER |100F
CLOOP |2012
FIRST 200F
e The following symbols are not yet defined.
o RREC is referred to the location 2013
o ENDFIL is referred to the location 201F
o WRREC is referred to the location 201C
= After scanning line 160 of the above program
Memory Symbol Value
Sddress Contents LENGTH | 100¢
1000 454F4600 00030000 OO0XXXXXX XXXXXXXX RDREC 203D
1010 XAXXXAXX KXXXXXXX XXAXXAXX AXXXXXXX — =
’ ___—TTHREE | 1003
. e ZERO | 1006
2000 XXXXXXXX X g(xxm"—-;xxxxxxx xxxxxx1l4
2010 10094820 3B00100C 28100630 20244d—] 4 | WRREC{* "'T’,iio_wl 0_-]—_-sz031 l"]
2020 C2012 0010000C 100F0010 06105 — [EOF | 1000
2030 49 #8—10094C00 OOFl0010 00041006 .
2040 001006E0 20393020 43D82039 28100630 ENDRIL__| 2024
2050 [—Jg4s0 oF
. RETADR | 1009
. BUFFER | 100F
; CLOOP | 2012
FIRST 200F
"MAXLEN | 2034
INPUT [Z099.]
EXIT *lo- 72'205010]
RLOOP | 2043
e Some of the forward references have been resolved by this time, while others
have been added.
e When the symbol ENDFILL was defined (line 45), the assembler places 2024 in
the SYMTAB entry.
e Insert 2024 in the location 201C. Then delete the linked list.
e Similar operations are happened for all forward references.
16 Prepared By: Dona Jose, AP, CSE,VICET

Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 1l System Software(S5 CSE)

= Load-and-go Single Pass Assembler Algorithm
Begin
Read 1% input line
If OPCODE = "START" then

{
Starting address = #OPERAND
LOCCTR = Starting address
Read the next input line
}
Else
LOCCTR =0
While OPCODE != ‘END’ do
{
If there is not a comment line then
{
If there is a symbol in the LABEL field then
{
Search SYMTAB for LABEL
If found then
{
If symbol value as null then
{
Symbol value = LOCCTR
Search the linked list with corresponding operand
Generate operand addresses as corresponding to symbol value
Delete the linked list
}
}
Else
Insert (LABEL, LOCCTR) into SYMTAB
}
Search OPTAB for OPCODE
If found then
{
Search SYMTAB for OPERAND address
If found then
If symbol value !'= null then
OPERAND address = symbol value
Else
Insert a node at the end of the linked list with address as LOCCTR+1
}
Else
{ Insert (symbol name, null) into SYMTAB
Create a linked list with address as LOCCTR+1
}
Generate object code and load it in memory location LOCCTR
17 Prepared By: Dona Jose, AP, CSE,VICET

Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 11l

System Software(S5 CSE)

LOCCTR = LOCCTR +3

}
Else if OPCODE = ‘WORD'’ then

{
Object code = #OPERAND
load this object code in memory location LOCCTR
LOCCTR = LOCCTR +3
}
Else if OPCODE = ‘RESW’ then
LOCCTR = LOCCTR +3x#OPERAND
Else if OPCODE = ‘RESB’ then
LOCCTR = LOCCTR + #OPERAND
Else if OPCODE = ‘BYTE'’ then
{
Convert constant to object code and load it in memory location LOCCTR
LOCCTR = LOCCTR +length of the constant
}

Else
Set error flag

}

Read the next input line

¥

End

If there are still SYMTAB entries indicated undefined symbols
Reports the error

Else
Jump to the location specified in END statement.

Object Program Output Assembler

e Forward references are entered into SYMTAB as before.

e When the definition of the symbol is encountered, the assembler generates
another Text Record with the correct operand address of each entry in the linked
list.

e When the program is loaded, the incorrect address 0 will be updated by the Text
Record containing the symbol definition.

e The object program records must be kept in their original order when they are
presented to the loader.

e The object code for the above program is

HCOPY 001000001074

TL00100009454F46000003,000000

TOO200E15141009, r.soooquo100c2Bloo&aooooq}:&aouooaczolz
Toozo1gozz024

'1'002022- 1 90010000C100F0010030C1 O'OC&EDDODPBIOOQ-&-CD OO‘DFJ. o01000
Too201 :yp ‘Izoan

TO00203D1EQ41006001006E0203930204 Z‘ff\DS2039',\281006A3O+0000A5¢90017“2{:20315“382043
TO0205 qu.'r?‘zoss

TO00205 I??O?AIOIO.OC‘\&COOOOAOS

700201 F022062

T00203 1022062
T00206218041006E0206L30206550900EDC20612C100C3820654C0000
EOO200F

18

Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 1l System Software(S5 CSE)

o When the definition of ENDFIL on line 45 is encountered, the assembler
generates the 3" Text Record. This record specifies that the value 2024 is to
be loaded at location 201C. When the program is loaded the value 2024 will
replace the 0000 previously loaded.

= Object Program Output Single Pass Assembler Algorithm
Begin
Read 1% input line
If OPCODE = 'START’ then
{
Starting address = #OPERAND
LOCCTR = Starting address
Read the next input line
}
Else
LOCCTR =0
Create Header Record and write it to object program
Initialize 1% Text Record
While OPCODE != ‘END’ do
{

If there is not a comment line then

{
If there is a symbol in the LABEL field then

{
Search SYMTAB for LABEL
If found then
{

If symbol value as null then
{
Symbol value = LOCCTR
Generate separate Text record with corresponding operand address
of each entry in the linked list
Delete the linked list

}

}
Else

Insert (LABEL, LOCCTR) into SYMTAB
}
Search OPTAB for OPCODE
If found then
{
Search SYMTAB for OPERAND address
If found then

If symbol value !'= null then
OPERAND address = symbol value
Else
Insert a node at the end of the linked list with address as LOCCTR+1

19 Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 1l System Software(S5 CSE)

}
Else

{ Insert (symbol name, null) into SYMTAB
Create a linked list with address as LOCCTR+1
}

Generate object code
LOCCTR = LOCCTR +3

}
Else if OPCODE = ‘WORD'’ then

{
LOCCTR = LOCCTR +3
Object code = #OPERAND
}
Else if OPCODE = ‘RESW' then
LOCCTR = LOCCTR +3x#OPERAND
Else if OPCODE = ‘RESB’ then
LOCCTR = LOCCTR + #OPERAND
Else if OPCODE = ‘BYTE'’ then

{
LOCCTR = LOCCTR +length of the constant
Convert constant to object code

}

Else

Set error flag
If object code will not fit into the current text record then

{
Write Text Record into object program
Initialize new Text Record
}
Add object code to Text Record
}
Read the next input line

}

Write last Text Record to object program
Write End Record to object program
End

o Multipass Assembler
= The symbols used on the RHS of EQU should be defined previously in the program.

= Eq:
ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 1

e The symbol BETA cannot be assigned a value when it is encountered during
Pass1 because DELTA has not yet been defined.

e Hence ALPHA cannot be evaluated during Pass 2.

e Symbol definition must be completed in pass 1.

20 Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 11l

System Software(S5 CSE)

Forward references tend to create difficulty for a person reading the program.
The general solution for forward references is a multi-pass assembler that can make
as many passes as are needed to process the definitions of symbols.
It is not necessary for such an assembler to make more than 2 passes over the entire
program.
The portions of the program that involve forward references in symbol definition are
saved during Pass 1.
Additional passes through these stored definitions are made as the assembly
progresses.
This process is followed by a normal Pass 2.
Implementation
e For a forward reference in symbol definition, we store in the SYMTAB:
o The symbol name
o The defining expression
o The number of undefined symbols in the defining expression
e The undefined symbol (marked with a flag *) associated with a list of symbols
depend on this undefined symbol.
e When a symbol is defined, we can recursively evaluate the symbol expressions
depending on the newly defined symbol.

Example
1 A EQU B/2
2 B EQU C-D
3 E EQU D-1
4 D RESB 4096
5 C EQU *
e After executing statement 1, the SYMTAB will become
A &1 | B2 L]
B * 1A [@
o &1 represent the number of undefined symbols in the defining expression
o B/2 is the defining expression
o *indicate the undefined symbol
o The node A represents depending list.
e After executing statement 2, the SYMTAB will become
A &1 | B2 o9
B &2 |C-D T>A_ [6
C * B To]
D * +—>[B (o]
e After executing statement 3, the SYMTAB will become
A &l |[BR2 7,
B &2 [C-D +—{a [9]
C : +—E o]
D : +—E [+>[E 19
E &l (D1 17

21

Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 11l

System Software(S5 CSE)

e Suppose the address of D is 1034. After executing statement 4, the SYMTAB

will become
A &1 B2
B &1 | C-1034 (A [0
C ; —{z o]
D 1034
E 1033

e After executing statement 5, C will be LOCCTR. The SYMTAB will become

A 300 9
B 1000 o9
C 2034 9
D 1034 9
E 1033 9

o Implementation example of MASM Assembler

= An MASM assembler program is written as a collection of segments.
Commonly used segments are CODE, DATA, CONST and STACK.

= Segments are addressed via segment registers

These registers are automatically set by the system loader when a program is loaded
for execution.

e CODE segment

- CS register

o If CSis set, then the current segment contains the label specified in the END
statement.

e STACK

-> SSregister

o SSisset indicate the last stack segment is processed by the loader.

e DATA and CONST - DS, ES, FS or GS registers

o If the programmer does not specify a segment register, one is selected by the
assembler.

o Default register is DS.

o This can be changed by using ASSUME assembly directive

= Jump instructions are assembled in 2 different ways

ASSUME

ES:DATASEG2

ES indicates the segment DATASEG2. Any references to labels that are
defined in DATASEG2 will be assembled using register ES

e Near Jump

o The target will be in the same code segment

o Itis assembled using the current code segment register CS
o Instruction size may be 2 or 3 bytes
e FarJump

o The target will be in a different code segment

o It is assembled using a different segment register, which is specified in an
instruction prefix.
o Instruction size is 5 bytes

Forward references to a label in a source program can cause problems:

22

Prepared By: Dona Jose, AP, CSE,VICET

Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 1l System Software(S5 CSE)

o Eg: JMP TARGET
o If the definition of TARGET occurs in the program before JMP instruction,
the assembler can tell whether this is a near jump or far jump. It is not
possible in the case of forward jump.
o By default, MASM assumes that a forward jump is a near jump.
o If the target of the jump is in another code segment, the programmer must
warn the assembler by writing JMP FAR PTR TARGET
o If the jump address is within 128 bytes, the programmer can specify a
shorter(2 bytes) near bytes by writing JMP SHORT TARGET
= Length of the assembled instruction is depends on its operand
e Eg: operands of ADD instruction can be
o Registers
o Memory locations: May take varying amount of space, depending upon the
location of the operand.
o Immediate operands: May occupy from 1 to 4 bytes in the instruction
= Pass 1 of an x86 assembler is more complex than Pass 1 of SIC assembler
e During Pass 1 of x86
o Analyze the operands of each instruction
o Looking at the operation code table
= |t contains information on which addressing modes are valid for each
operand.
= Segments in a MASM source program can be written in more than one part.
e All the parts are gathered together by the assembly process.
= References between segments are handled by the assembler.
e Use the directive PUBLIC. It has the same function as EXTDEF in SIC/XE.
= External references between separately assembled modules must be handled by the
linker.
e Use the directive EXTRN. It has the same function as EXTREF in SIC/XE.
= The object program from MASM may be in several different formats
e Allow easy and efficient execution of the program in a variety of operating
environments.
= MASM produces an instruction timing that shows the number of clock cycles
required to execute each instruction.
Previous Year University Questions
What is a Literal? How is a literal handled by an assembler?
With example, write notes on Program Blocks.
How the assembler handles multiple Program blocks?
What are control sections? What is the advantage of using them?
What are control sections? lllustrate with an example, how control sections are used and
linked in an assembly language program.
Explain the format and purpose of Define and Refer records in the object program.
What are the uses of assembler directives EXTDEF and EXTREF?
8. How are control sections different from program blocks? Explain, with proper examples,
the purpose of EXTREF and EXTDEF assembler directives.
9. Give the format and purpose of the different record types present in an object program
that uses multiple control sections

agrwNpE

~No

23 Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 1l System Software(S5 CSE)
10. Develop the records (excluding header, text and end records) for the following control
section named COPY
Loc Source Statement
0000 | COPY START 0
EXTDEF BUFFER. BUFFEND, LENGTH
EXTREF RDREC.WRREC
0000 | FIRST STL RETADR
0003 | CLOOP +ISUB RDREC
0007 LDA LENGTH
000A COMP #0
000D TEQ ENDFIL
0010 +ISUB WRREC
0014 I CLOOP
0017 | ENDFIL LDA =C ‘EOF’
001A STA BUFFER
001D LDA 43
0020 STA LENGTH
0023 +ISUB WRREC
0027 7 @RETADR
002A |RETADR RESW 1
002D |LENGTH RESW 1
LTORG
0030 =C ‘EOF’
0033 |BUFFER RESB 4096
1033 |BUFEND EQU *
1000 |[MAXLEN EQU BUFEND-BUFFER
11. Explain how external references are handled by an assembler.
12. Distinguish between Program Blocks and Control Section
13. Differentiate between control sections and program blocks with the help of an example.
14. Differentiate Program Blocks and Control Sections. Explain how address calculation is
performed in the case of Program Blocks
15. What is a load and go assembler?
16. Explain the concept of single pass assembler with a suitable example.
17. Explain the working of any one type of One pass Assembler
18. What is a forward reference? How are forward references handled by a single pass
assembler?
19. Explain the working of Multi pass assemblers with an example.
20. Employ multipass assembler to evaluate the following expressions

24

Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

Module 11l

System Software(S5 CSE)

Expression No. Loc Source Statement
1 HALFSZ EQU MAXLEN/2
2 MAXLEN EQU BUFEND-BUFFER
3 PREVBT EQU BUFFER-1
4 4034 BUFFER RESB 4096
5 5034 BUFEND EQU *

21. Write short notes on MASM assembler.

25

Prepared By: Dona Jose, AP, CSE,VICET
Reference Book: System Software: An Introduction to System Programming, Leland L Beck

