
B.Tech. CSE

Semester III

Viswajyothi College of Engineering and Technology

CST205: OBJECT ORIENTED DESIGN

AND PROGRAMMING USING JAVA

Course Objectives

1. Write Java programs using the object oriented concepts -

classes, objects, constructors, data hiding, inheritance and

polymorphism

2. Utilise datatypes, operators, control statements, built in

packages & interfaces, Input/ Output Streams and Files in

Java to develop programs

3. Illustrate how robust programs can be written in Java using

exception handling mechanism

4. Write application programs in Java using multithreading

and database connectivity.

5. Write Graphical User Interface based application programs

by utilising event handling features and Swing in Java

 Text Books: Reference Books:

 1. Herbert Schildt, Java: The Complete Reference,

8/e, Tata McGraw Hill, 2011.

 2. Rajib Mall, Fundamentals of Software Engineering, 4th

edition, PHI, 2014.

 3. Paul Deitel, Harvey Deitel, Java How to Program, Early

Objects 11th Edition, Pearson, 2018.

3

Syllabus of Module 1

 Introduction: Approaches to Software Design - Functional

Oriented Design, Object Oriented Design, Case Study of

Automated Fire Alarm System.

 Object Modeling Using Unified Modeling Language (UML) –

Basic Object Oriented concepts, UML diagrams, Use case

model, Class diagram, Interaction diagram, Activity diagram,

State chart diagram.

 Introduction to Java - Java programming Environment and

Runtime Environment, Development Platforms -Standard,

Enterprise. Java Virtual Machine (JVM), Java compiler,

Bytecode, Java applet, Java Buzzwords, Java program structure,

Comments, Garbage Collection, Lexical Issues.

Function-Oriented Design

 Function oriented design is the result of focusing

attention to the function of the program. This is based

on the stepwise refinement which follows top down

strategy.

 We start with a high level description of what the

program does. Then, in each step, we take one part of

our high level description and refine it.

 The refinement of each module is done until we reach

the statement level of our programming language.

 Structure of function-oriented programming

Drawback:

 More importance to functions and very little attention to

data that are being used by the functions.

 In multi-function program many important data items are

placed as global so that they may be accessed by all the

functions. Each function may have its own local data.

 In large program it is very difficult to identify what data is

used by which function.

Object-Oriented Programming

 OOP treats data as a critical element in the program

development and does not allow it to flow freely around

the system.

 It ties data more closely to the functions that operate on it,

and protects it from accidental modification from outside

functions.

 OOP allows decomposition of a problem into a number of

entities called objects.

 Organization of data & function in OOP

Features of OOP

 Emphasis is on data rather than procedure or function.

 Programs are divided into what are known as objects.

 Data is hidden and cannot be accessed by external functions.

 Objects may communicate with each other through functions.

 New data and functions can be easily added whenever

necessary.

Object Oriented Concepts

 Class

 Objects

 Data Abstraction

 Data Encapsulation

 Inheritance

 Polymorphism

 Dynamic binding

 Message Passing

 The three pillars of object-oriented development:

 Encapsulation, Inheritance, and Polymorphism.

Classes

 Classes are user-defined data types and behave like the built-in

types of a programming language.

 Objects are variable of type class.

 Once a class has been defined we can create any number of

objects belonging to that class.

 A class is thus a collection of objects of similar type.

 Syntax used to create an object is no different than the syntax

used to create an integer object in C.

 Suppose Dog is a class defined.

Dog d1; //Here Dog is Class and d1 is an object of Dog

Class.

Objects

 Objects are the basic run-time entities in an object oriented

system.

 They may represent a person, a place, a bank account, a table

of data or any item that the program must handle.

 Program objects should be chosen such that they match

closely with the real-world objects.

 Objects take up space in the memory.

 Each object is said to be an instance of its class.

 Class is composed of attributes that defines the properties of

object and functions that display the behaviour .

 Each instance of the class(ie object) has its own value for each

attribute but shares the same attribute names and operations

with other instances of the class.

 Representation of class

15

CLASS

OBJECT

Encapsulation

 The wrapping up of data and functions into a single unit is

known as Encapsulation.

 The data is not accessible to the outside world and only

those functions which are wrapped in the class can access it.

 This insulation of the data from direct access by the

program is called data hiding or information hiding.

Inheritance:

 Inheritance is the process by which objects of one class

acquire the properties of objects of another class.

 The principle behind this sort of division is that each

derived class shares common characteristics with the class

from which it is derived.

 Parent class is called base/superclass. Derived class is

called subclass/derived class.

 In OOP the concept of inheritance provides the idea of

reusability. This means that we can add additional features

to an existing class without modifying it.

Inheritance

Data Abstraction

 Abstraction refers to the act of representing essential

features without including the background details or

explanations.

 Classes use the concept of abstraction and are defined as a

list of abstract attributes such as size, weight and cost, and

functions to operate on these attributes.

 Since the classes use the concept of data abstraction, they

are known as Abstract Data Types.

 Abstract classes have no instances but define common

behaviors that can be inherited by more specific classes.

Polymorphism:

 Polymorphism means the ability to take more than one form.

 Different behaviours is exhibited in different instances. The

behaviour depends upon the types of data used in the operation.

 Example: Operation of addition.

 For two numbers the operation will generate a sum. If the operands

are strings, then the operation would produce a third string by

concatenation.

 The process of making an operator to exhibit different behaviours

in different instances is known as operator overloading.

 Using a single function name to perform different types of tasks

is known as function overloading.

Polymorphism

21

Dynamic Binding

 The process of determining at run time which function to

invoke is termed as dynamic binding.

 The code associated with a given procedure call is not

known until the time of the call at run-time.

 It is associated with polymorphism and inheritance.

Message Communication:

 An object-oriented program consist of a set of objects that

communicate with each other.

 Message passing involves specifying the name of the object,

the name of the function (message) and the information to be

sent.

 Eg: emp.salary(emp_name); Here emp is the object, salary is

the message and emp_name is the information

Advantages of OOP

 Redundant code is eliminated and existing classes can be

extended by the principle of inheritance.

 The principle data hiding helps the programmer to build

secure programs.

 It is possible to have multiple objects to coexist without

any interference.

 Object-oriented systems can be easily upgraded from small

to large systems.

Introduction to Java

Java’s History
 Originally developed by James Gosling at Sun

Microsystems (which is now a part of Oracle Corporation)

 Originally called Oak

 Released in 1995

 Aimed at producing an operating environment for networked

devices and embedded systems.

 Design objectives for the language
 Simple, secure, object-oriented, architecture-neutral and

portable, distributed and dynamic.

Java Programming Environment

Consists of

Java language – used by programmers to

write the application.

The Java Virtual Machine(JVM)-used to

execute the application.

27

Java Runtime Environment(JRE)

 It is what you get when you download java

software.

 JRE consists of Java Virtual Machine(JVM),

Java platform core classes and supporting

java platform libraries.

28

Java Programming Language Platforms

 A Java platform is a particular environment in which Java

programming language applications run.

 All Java platforms consist of a Java Compiler , Java Virtual

Machine (JVM) and an application programming interface

(API).

 An API is a collection of software components(classes,

packages etc) that we can use to create other software

components or applications. It is an intermediary software that

allows the applications to talk to each other.

 The API is a collection of available java classes, packages and

interfaces.

w

30

Java Programming Language Platforms

 Java Platform, Standard Edition (J2SE) or Java SE

 Java SE's API provides the core functionality of the Java

programming language.

 J2SE can be used to develop standalone applications or applets.

 Java Platform, Enterprise Edition (J2EE) or Java EE

 The Java EE platform provides an API and runtime environment for

developing and running large-scale applications.

 Java platform Micro Edition (J2ME) or Java ME

 J2ME can be used to develop applications for mobile devices.

 JavaFX

 JavaFX is a platform for creating rich internet applications

The Compilation Process for Non-Java Programs

source code

(programming

language instructions)

object code (binary

instructions)

Programmers write this.

Computers run this.

Compiler compile

source code into

object code.

The Compilation Process for Java Programs

Java source code

object code

Java compilers compile source

code into bytecode.

bytecode

When a Java program run, the

JVM translates bytecode to

object code.

Computers run this.

34

Java Virtual Machine (JVM)

 Bytecode is a highly optimized set of instructions designed to

be executed by the Java run-time system, which is called the

Java Virtual Machine (JVM).

 It is a platform-independent execution environment that

converts Java bytecode into machine language and executes it.

 As a Java program’s bytecode runs, the bytecode is translated

into object code by the computer's bytecode interpreter

program. Called Java Virtual Machine.

 JVM architecture in Java contains classloader, memory area,

execution engine etc.

 The class loader is a subsystem used for loading class files. It

performs three major functions viz. Loading, Linking, and

Initialization.

36

37

Java Virtual Environment (JVM):

It is an abstract machine and does not have a physical

existence.

The aim of JVM is to run Java programs irrespective

of the OS, making it platform independent.

Tasks of JVM:

➢ Load and verify the code

➢Execute the code

➢Provides a run-time environment to execute

Java bytecode.

First, the Java compiler compiles the source code

into bytecode. Then the JVM executes the bytecode.

Thus, JVM converts the Java bytecode into machine

code.

38

39

40

Comparison of JRE and JDK
 JRE :

 The Java Runtime Environment (JRE) provides the libraries, the Java

Virtual Machine, and other components to run applets and applications

written in the Java programming language.

 JRE does not contain tools and utilities such as compilers or debuggers for

developing applets and applications.

 JDK :

 The JDK also called Java Development Kit is a superset of the JRE, and

contains everything that is in the JRE, plus tools such as the compilers and

debuggers necessary for developing applets and applications.

Java Applications and Applets

Java can be used to create two types of programs

An application is a program that runs on your

computer, under the operating system of that computer.

An applet is an application designed to be transmitted

over the Internet and executed by a Java-compatible Web

browser. It is embedded in HTML page using APPLET

or OBJECT tag.

 An applet is a program that can react to user input and

dynamically change

Java buzzwords(Characteristics and Features of Java)

 Java Is Simple

 Java Is Secure

 Java Is Object-Oriented

 Java Is Robust

 Java Is Compiled and Interpreted

 Java Is Architecture-Neutral

or Platform Independent

 Java Is Portable

 Java Is Multithreaded

 High Performance

 Java Is Distributed

 Java Is Dynamic

◼ Java inherits the C/C++ syntax

and many of the object-oriented

features of C++ . So JAVA is easier

for programmers to learn it after

C++.

◼ Removed many confusing and

rarely-used features

Eg: explicit pointers, operator

overloading

◼ No need to remove unreferenced

objects because there is Automatic

Garbage Collection in java

Java buzzwords(Characteristics and Features of Java)

 Java Is Simple

 Java Is Secure

 Java Is Object-Oriented

 Java Is Robust

 Java Is Compiled and Interpreted

 Java Is Architecture-Neutral

or Platform Independent

 Java Is Portable

 Java Is Multithreaded

 High Performance

 Java Is Distributed

 Java Is Dynamic

◼ Every time a user compiles the Java

program, the Java compiler creates a class

file with Bytecode, which is tested by the

JVM at the time of program execution for

viruses and other malicious files.

◼ No explicit pointer so memory blocks

cannot be accessed.

◼ Exception enables Java to capture a series

of errors that helps developers to get rid of

risk of crashing the system.

◼ Java’s access-control functionality on

variables and methods within the objects

provide secure program by preventing

access to the critical objects from the

untrusted code.

Java buzzwords(Characteristics and Features of

Java)

 Java Is Simple

 Java Is Secure

 Java Is Object-Oriented

 Java Is Robust

 Java Is Compiled and Interpreted

 Java Is Architecture-Neutral

or Platform Independent

 Java Is Portable

 Java Is Multithreaded

 High Performance

 Java Is Distributed

 Java Is Dynamic

▪ Basic concepts of OOPs are:

▪ Object

▪ Class

▪ Inheritance

▪ Polymorphism

▪ Abstraction

▪ Encapsulation

▪ Java supports Object Oriented

concepts.

▪ All program code and data reside

within objects and classes.

▪ The object model in Java is simple and

easy to extend.

Java buzzwords(Characteristics and Features of

Java)

 Java Is Simple

 Java Is Secure

 Java Is Object-Oriented

 Java Is Robust

 Java Is Compiled and Interpreted

 Java Is Architecture-Neutral

or Platform Independent

 Java Is Portable

 Java Is Multithreaded

 High Performance

 Java Is Distributed

 Java Is Dynamic

▪ Robustness means strong and reliable.

▪ Java is reliable because of the

following reasons

▪ Uses strong memory

management i.e. lack of

pointers hence avoids security

problem

▪ There is automatic garbage

collection

▪ There is exception handling

mechanism

▪ There is type checking

mechanism. Java is a strictly

typed language. It checks the

code at compile time as well as

at run time

Java buzzwords(Characteristics and Features of

Java)
 Java Is Simple

 Java Is Secure

 Java Is Object-Oriented

 Java Is Robust

 Java Is Compiled and Interpreted

 Java Is Architecture-Neutral

or Platform Independent

 Java Is Portable

 Java Is Multithreaded

 High Performance

 Java Is Distributed

 Java Is Dynamic

▪ Java compiler translates source

code into bytecode instructions.

▪ The bytecode is machine-

independent and can run on any

machine that has a Java

interpreter(JVM).

▪ Java interpreter(JVM) generates

machine code that can be

directly executed by the

machine.

Java buzzwords(Characteristics and Features of

Java)
 Java Is Simple

 Java Is Secure

 Java Is Object-Oriented

 Java Is Robust

 Java Is Compiled and Interpreted

 Java Is Architecture-Neutral or

Platform Independent

 Java Is Portable

 Java Is Multithreaded

 High Performance

 Java Is Distributed

 Java Is Dynamic

▪ Java code is compiled by the

compiler and converted into

bytecode.

▪ This bytecode is platform

independent because it can be run

on multiple platforms with a Java

Virtual Machine (JVM). i.e. Write

Once and Run Anywhere(WORA).

Java buzzwords(Characteristics and Features of

Java)
 Java Is Simple

 Java Is Secure

 Java Is Object-Oriented

 Java Is Robust

 Java Is Compiled and Interpreted

 Java Is Architecture-Neutral

or Platform Independent

 Java Is Portable

 Java Is Multithreaded

 High Performance

 Java Is Distributed

 Java Is Dynamic

◼ Because Java is architecture neutral, Java

programs are portable. They can be run

on any platform without being

recompiled.

Java buzzwords(Characteristics and Features of

Java)

 Java Is Simple

 Java Is Secure

 Java Is Object-Oriented

 Java Is Robust

 Java Is Compiled and Interpreted

 Java Is Architecture-Neutral

or Platform Independent

 Java Is Portable

 Java Is Multithreaded

 High Performance

 Java Is Distributed

 Java Is Dynamic

▪ A thread is like a separate program,

executing concurrently.

▪ Allows you to write programs that do many

things simultaneously.

Java buzzwords(Characteristics and Features of

Java)

 Java Is Simple

 Java Is Secure

 Java Is Object-Oriented

 Java Is Robust

 Java Is Compiled and Interpreted

 Java Is Architecture-Neutral

or Platform Independent

 Java Is Portable

 Java Is Multithreaded

 High Performance

 Java Is Distributed

 Java Is Dynamic

▪ The execution speed of Java programs

improved significantly due to the

introduction of Just-In Time

Compilation (JIT)

▪ They can be run on any platform

without being recompiled.

Java buzzwords(Characteristics and Features of

Java)
 Java Is Simple

 Java Is Secure

 Java Is Object-Oriented

 Java Is Robust

 Java Is Compiled and Interpreted

 Java Is Architecture-Neutral

or Platform Independent

 Java Is Portable

 Java Is Multithreaded

 High Performance

 Java Is Distributed

 Java Is Dynamic

▪ Distributed computing involves several

computers working together on a

network.

▪ We can create distributed applications

in java. RMI and EJB are used for

creating distributed applications.

▪ Java handles TCP/IP protocols.

▪ Networking capability is inherently

integrated into Java, writing network

programs is like sending and receiving

data to and from a file.

Java buzzwords(Characteristics and Features of

Java)

 Java Is Simple

 Java Is Secure

 Java Is Object-Oriented

 Java Is Robust

 Java Is Compiled and Interpreted

 Java Is Architecture-Neutral

or Platform Independent

 Java Is Portable

 Java Is Multithreaded

 High Performance

 Java Is Distributed

 Java Is Dynamic

▪ Java programs carry with them substantial

amount of run time information that is used

to verify and resolve accesses to object at

runtime.

▪ Java is capable of dynamically linking in

new class libraries, methods, and objects.

Java Comments

 Why Comments?

 Comments are pieces of text notes that are added to a

program in order to describe something about the program

or provide any information.

 Comments make the programs more human readable and

easier to understand.

 Any statement written as comments is non-executable.

 The compiler and interpreter ignore these statements while

compiling the program.

 These do not affect the flow of the program or the output.

54

Uses of Comments

 Code Description:

 Information about the Source Code:

 Planning and Debugging:

 Automatic documentation generation:

55

Types of Comments in Java:
 Single line Comment:

This is used to comment on a single line in a program. The syntax is as follows:

//This represents a single line Comment

 Multi-line Comment:

To comment on multiple lines in a program, we use this type of comment. The

syntax is as follows:

/*This is multi-line comment statement 1

This is multi-line comment statement 2

*/

 Documentation Comment:

We place these doc comments above the methods or classes which we want to

document. The JDK Javadoc tool uses these doc comments to automatically

prepare documentation of the source code. This comment is very much similar

to multi-line comment except for an extra “*”.

/**This represents documentation comments.

This is Javadoc

@author Ipsita

*/56

 /**

* The HelloWorld program implements an application that

* simply displays "Hello World!" to the standard output.

*

* @author Zara Ali

* @version 1.0

* @since 2014-03-31 */

public class HelloWorld {

public static void main(String[] args)

{ // Prints Hello, World! on standard output.

System.out.println("Hello World!");

}

}
57

Java Garbage Collection

 In java, garbage means unreferenced objects.

 Garbage Collection is process of reclaiming the runtime

unused memory automatically. In other words, it is a way to

destroy the unused objects.

 To do so, we were using free() function in C language and

delete() in C++. But, in java it is performed automatically.

So, java provides better memory management.

 Advantage of Garbage Collection

➢It makes java memory efficient because garbage collector

removes the unreferenced objects from heap memory.

➢It is automatically done by the garbage collector(a part of

JVM) so we don't need to make extra efforts.

58

How can an object be unreferenced?

There are many ways:

 By nulling the reference

eg) Employee e = new Employee();

e = null;

 By assigning a reference to another

eg) Employee e1=new Employee();

Employee e2=new Employee();

e1=e2; //now the first object referred by e1 is

available for garbage collection

 By anonymous object etc.

eg) new Employee();

59

Lexical issues

 Java programs is a collection of White spaces , Identifiers ,

comments , Literals , Operators , Separators and Keywords.

-White Spaces

Java is a free form language. This means that you do not need

to follow any special indentation rules. In java , white spaces

is a space , tab or new line.

-Identifiers

Identifiers are used for class names , method names and

variable names. An identifier may be any descriptive sequence

of uppercase and lowercase letters , numbers or the

underscore and dollar sign design.

60

Contd..

-Literals

A constant value in java is created by using a literal

representation of it. A literal can be used anywhere a value of

its type is allowed.

-Comments

There are 3 types of comment in java. First is single line

comment and the second one is multi line comment. The

third type of comment is called documentation comment. It

is used to produce an HTML file that documents your

program. It begins with a/** and ends with a*/.

61

Contd..

62

-Separators

There are few symbols in java that are used as separators.The

most commonly used separator in java is the semicolon ' ; '.

some other separators are Parentheses '()' , Braces ' {} '

, Bracket ' [] ' , Comma ' , ' , Period ' . ' .

- Java Keywords

There are 49 reserved keywords currently defined in java.

These keywords cannot be used as names for a variable , class

or method.

Contd..

 The Keywords are : abstract , assert , boolean , break , byte

, case , catch , char , class , const , continue , default , do ,

double , else , extends , final , finally , float , for , goto , if ,

implements , import , instanceof , int interface , long , native

, new , package , private , protected , public , return , short ,

static , strictfp , super , switch ,

synchronized , this , throw , throws , transient , try , void ,

volatile, while.

63

A Simple Java Program – Hello.java A simple C Program Hello.C

 To compile:

 javac Hello.java

 To run:

 java Hello

/*Hello World, first program in java.

This program prints Hello World.

*/

import java.io.*;

class Hello

{

public static void main (String args [])

{

System.out.println(“Hello
World\n”);

} //end main

}//end class o/p: Hello World

/* Hello World, first program in C.

This program prints Hello World.

*/

#include <stdio.h>

void main()

{

printf("Hello, World!");

}

o/p: Hello World

public static void main (String args [])

 All Java applications begin execution by calling main()

 main() must be declared as public, since it must be called by code outside

of its class when the program is started.

 The keyword static allows main() to be called without having to

instantiate a particular instance of the class. This is necessary since main()

is called by the Java interpreter before any objects are made.

 The keyword void simply tells the compiler that main() does not return a

value.

 String args[] declares a parameter named args, which is an array of

instances of the class String

 Objects of type String store character strings

 In this case, args receives any command-line arguments present when

the program is executed.

class Dog{

String breed;

String color;

void bark()

{

System.out.println("The " +color+" " +breed+ " is

barking");

}

public static void main(String args[])

{

Dog d1=new Dog();

d1.breed="Pug";

d1.color="black";

d1.bark();

} o/p: The black Pug is barking

}

66

System.out.println(“Hello World”);

 This line outputs the string “Hello World” followed by a new line

on the screen.

 System is a predefined class that provides access to the system

 out is the output stream that is connected to the console

 println() displays the string which is passed to it

Another Example:
class Example2

{

public static void main(String args[])

{

int num; // this declares a variable called num

num = 100; // this assigns num the value 100

System.out.println("This is num: " + num);

num = num * 2;

System.out.println("The value of num * 2 is “ + num);

}

}

o/p : This is num: 100

The value of num*2 is 200

69

Note : - Set Environment variables – To run java programs anywhere

◼ Set path to JDK bin directory

◼ set path=C:\Program Files\Java\jdk1.8.0_31\bin

A closer look
/*

Hello World, first application, only output.

*/

import java.io.*;

class Hello

{

public static void main (String args [])

{

System.out.println(“Hello World”);

} //end main

}//end class

▪ Similar to #include<stdio.h>

▪ Access to all the classes defined in java.io

Multi line comment

Keyword class to declare a new class

Name of the class

Main method

Excecution statement

Single line comment

Basic Structure of Java Program
A Java program involves the following sections:

 Documentation Section

You can write a comment in this section. Comments are beneficial for the

programmer because they help them understand the code.

 Package Statement

A package is a group of classes that are defined by a name. That is, if you want to

declare many classes within one element, then you can declare it within a

package. It is an optional part of the program.There are built in as well as user

defined packages

eg) package student;

 Import Statements

This line indicates that if you want to use a class of another package, then you

can do this by importing it directly into your program.

eg) import student.MyClass;

71

Contd..

 Interface Statement

Interfaces are like a class that includes a group of method declarations. It's an

optional section and can be used when programmers want to implement

multiple inheritances within a program.

 Class Definition

A Java program may contain several class definitions. Classes are the main and

essential elements of any Java program.

 Main Method Class
Every Java stand-alone program requires the main method as the starting

pointof the program. This is an essential part of a Java program. There may

be many classes in a Java program, and only one class defines the main

method. Methods contain data type declaration and executable statements.

72

Notice:

 Java is CASE SENSITIVE!!

 File name has to be the same as class name in file.

 Need to import necessary class definitions

 All statements in Java end with a semicolon.

 Whitespace is ignored by compiler

 In Java, all code must reside inside a class.

